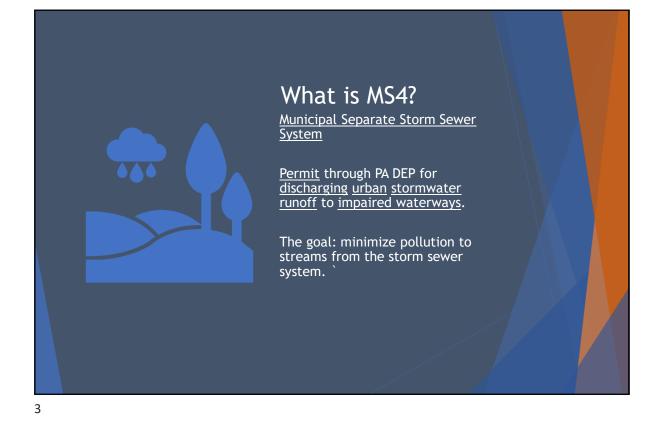
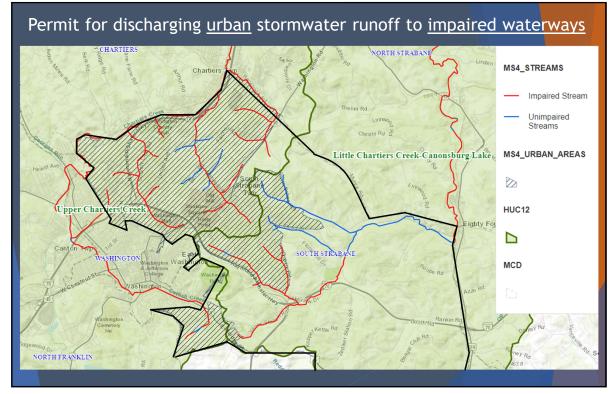
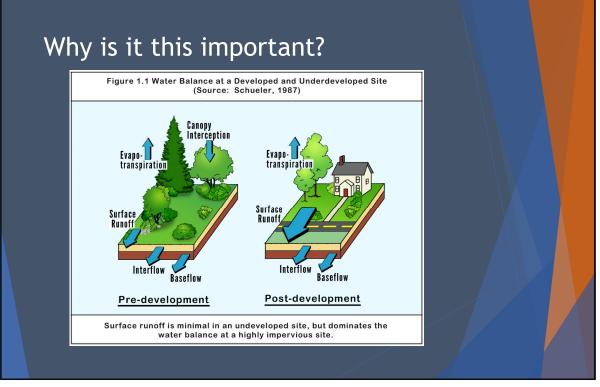
Understanding the MS4 Program

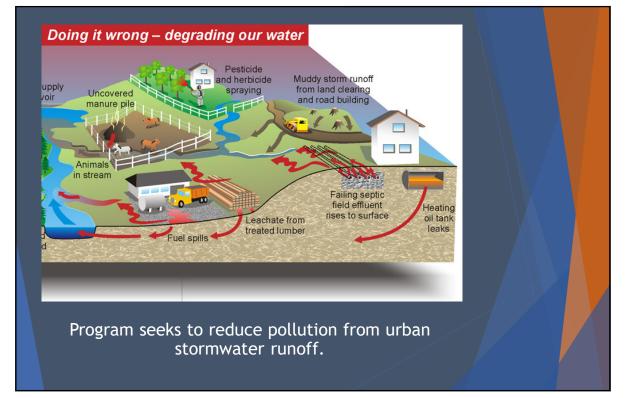
Sam Carroll, PE Harshman CE Group

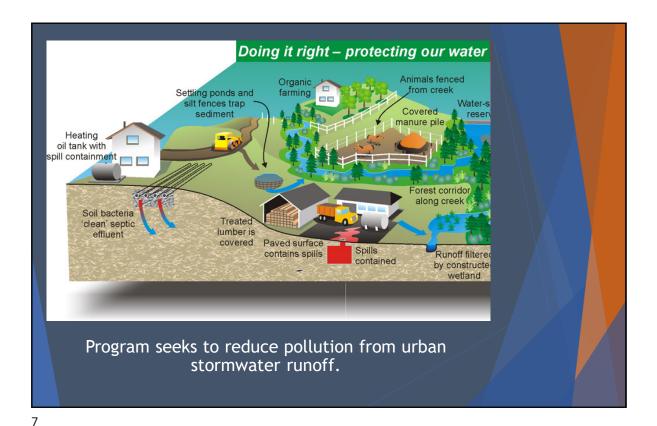
1

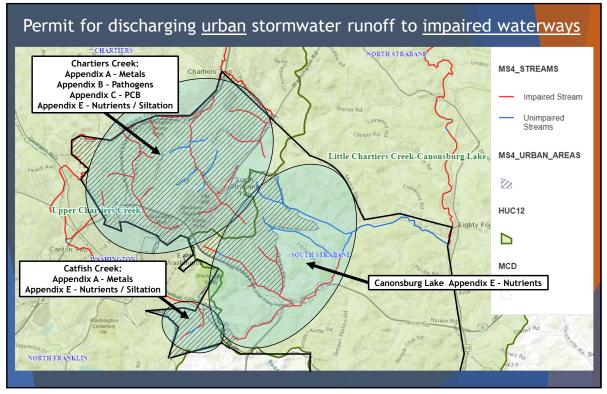

A Roadmap to Understanding the MS4 What is it?


Why is it?


What does the MS4 Require?


Where are we now?


What's Next?



MS4 Name	NPDES ID	Individual Permit Required?	Reason	Impaired Downstream Waters or Applicable TMDL Name	Requirement(s)	Other Cause(s) of Impairmen
shington County			SP. IP	1		
SOUTH STRABANE TWP	PAI136118	Yes	5P, IP	Canonsburg Lake	Appendix E-Nutrients (4a)	
				Catfish Creek	Appendix A-Metals (4a), Appendix E-Suspended Solids (4a), Appendix E-Nutrients, Organic Enrichment/Low D.O., Siltation (5)	
				Chartiers Creek	Appendix A-Metals (4a), Appendix C-PCB (4a), Appendix E- Suspended Solids (4a), Appendix B-Pathogens (5), Appendix E-Nutrients, Organic Enrichment/Low D.O., Silitation (5)	Turbidity (5)
				Chartiers Run	Appendix A-Metals (4a), Appendix E-Suspended Solids (4a), Appendix B-Pathogens (5), Appendix E-Nutrients, Organic Enrichments and O. Stitution (5)	Turbidit y (5)
				Plum Run	Appendix E-Nutrients, Organic Enrichment/Low D.O., Siltation	Other Habitat Alterations (4c)
				Unnamed Tributaries to Chartiers Creek	(4a)	Other Habitat Alterations (4c)
					lution Reduction Plan (PRP) 5% reduction in Phosphorou	

We can reduce sediment and nutrient pollution by using Best Management Practices (BMPs)

BMP Effectiveness Values BMP Effectiveness Values			e Values	alues	
BMP Name			Sediment	BMP Description	
Stream Restoration	0.075 lbs/ft/yr	0.068 lbs/ft/yr	44.88 lbs/ft/yr	An annual mass nutrient and sediment reduction credit for qualifying strear restoration practices that prevent channel or bank erosion that otherwise would b delivered downstream from an actively enlarging or incising urban stream. Applie to 0 to 3rd order streams that are not tidally influenced. If one of the protocols i cited and pounds are reported, then the mass reduction is received for the protococ	
Forest Buffers	25%	50%	50%	An area of trees at least 35 feet wide on one side of a stream, usuall accompanied by trees, shrubs and other vegetation that is adjacent to a body or water. The riparian area is managed to maintain the integrity of stream channel: and shorelines, to reduce the impacts of upland sources of pollution by trapping filtering, and converting sediments, nutrients, and other chemicals. (Note – th values represent pollutant load reductions from stormwater draining through buffers).	
Tree Planting	10%	15%	20%	The BMP effectiveness values for tree planting are estimated by DEP. DEI estimates that 100 fully mature trees of mixed species (both deciduous and non deciduous) provide pollutant load reductions for the equivalent of one acre (i.e one mature tree = 0.01 acre). The BMP effectiveness values given are based o immature trees (seedlings or saplings); the effectiveness values are expected t increase as the trees mature. To determine the amount of pollutant load reduction that can credited for tree planting efforts: 1) multiply the number of trees planted b 0.01; 2) multiply the acreage determined in step 1 by the pollutant loading rate for the land prior to planting the trees (in lbs/acre/year); and 3) multiply the result of step 2 by the BMP effectiveness values given.	
Filtering Practices	40%	60%	80%	Practices that capture and temporarily store runoff and pass it through a filter be of either sand or an organic media. There are various sand filter designs, such a above ground, below ground, perimeter, etc. An organic media filter uses anothe medium besides sand to enhance pollutant removal for many compounds due t the increased cation exchange capacity achieved by increasing the organic matter These systems require yearly inspection and maintenance to receive pollutar reduction credit.	

South Strabane's current PRP recommends a combination of Stream Bank Restorations & vegetative open channels

13

Through new mapping methods and claiming existing stormwater ponds we can <u>reduce</u> <u>the regulatory obligations</u> of the Township

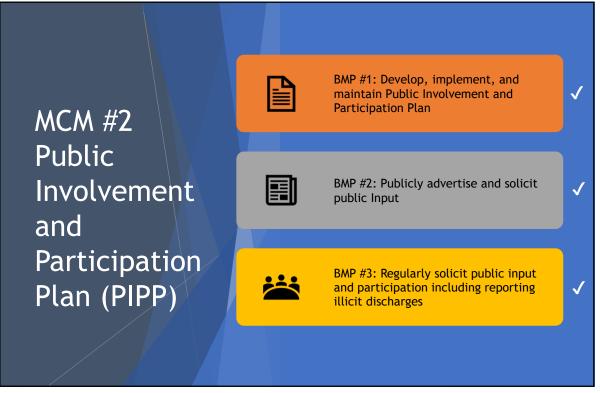
 Current pollutant load from storm sewer system:
 3,626,308 lbs of sediment

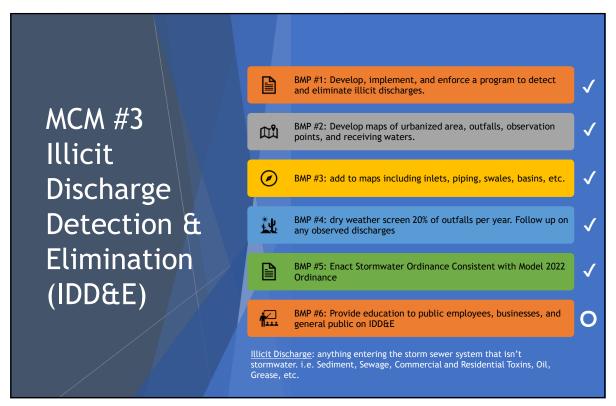
 OPTION
 Required pollution reduction (%):
 x 10% sediment pollution

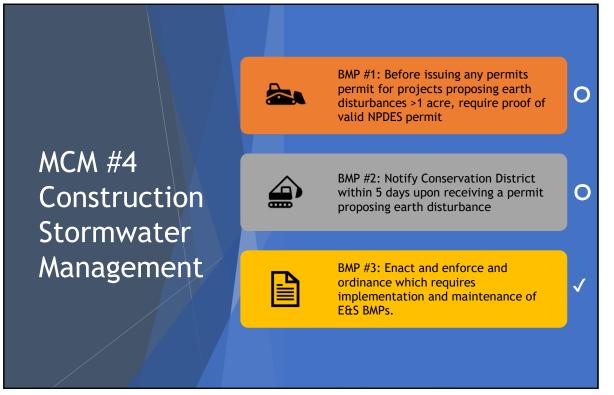
 A
 Required pollutant reduction (lbs):
 362,630 lbs of sediment

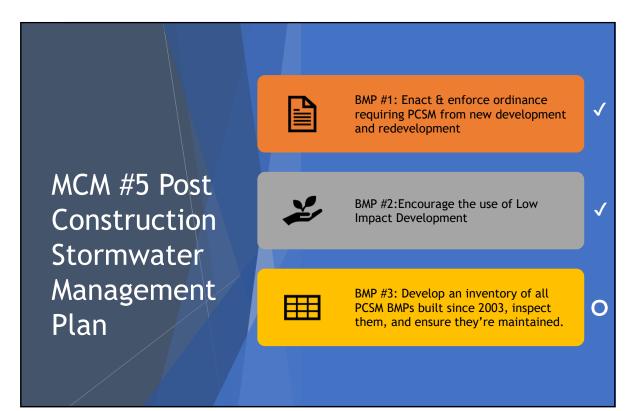
 Current estimated market costs \$4-\$12per lb:
 \$1,450,000 - \$4,350,000

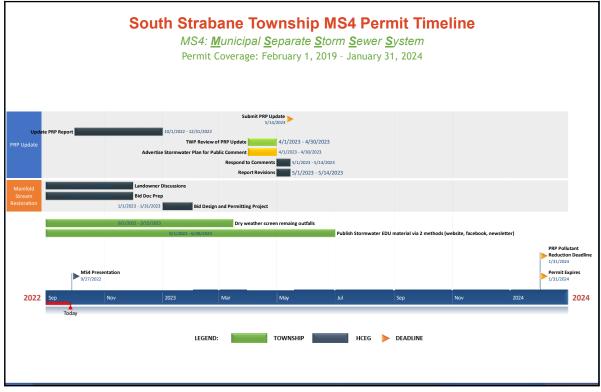
Current pollutant load from storm sewer system:3,626,308 lbs of sedimentOPTIONExisting stormwater ponds capture:- Up to 60% of incoming sedimentBRemaining sediment pollution load:To be determinedRequired pollution reduction:10% of remaining sediment

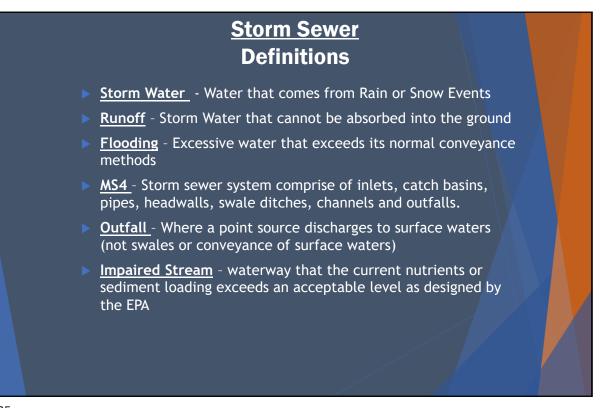



7 Primary Requirements of the MS4 Program


- Pollution Reduction Plan (PRP)
 - Focus on reducing sediment (10%) and phosphorous (5%)
 - Reductions happen by constructing BMPs
- MCM 1: Public Education and Outreach
- MCM 2: Public Participation / Involvement
- MCM 3: Illicit Discharge Detection and Elimination
- MCM 4: Construction Site Runoff Control
- MCM 5: Post-Construction Runoff Control
- MCM 6: Pollution Prevention / Good Housekeeping


MCM: Minimum Control Measure





Storm Sewer Pollution Reduction Plan

- PRP is an approved plan that provides the information relating specifically to South Strabane Township
 - Urbanized Area and Storm Sewer System = 5,378.6 acres
 - 1,398.4 Impervious Surface Acres; 3,980.2 Pervious Surface Acres
 - > 3,626,308.1 lbs/year of sediment load per DEP loading rates
 - 10% sediment reduction required by Appendix E
 - Reduce 362,630.8 lb/year by 2024 Renewal Date
- Six (6) Approved Reduction Locations & Methods
 - Stream Bank Restorations
 - Along Oak Spring Road
 - Along Country Club Road
 - Along Lakeview Drive
 - Behind homes along Ashmore Drive
 - Along Manifold Drive
 - Vegetative Open Channel
 - Behind homes along Verona Drive

