GEOTECHNICAL ENGINEERING INVESTIGATION REPORT

MEADOWS LANDING RESIDENTIAL DEVELOPMENT SOUTH STRABANE TWP., WASHINGTON CO., PENNSYLVANIA

Prepared for:

KGA PARTNERS, LLC PITTSBURGH, PENNSYLVANIA

MAY 2021

Prepared by:

GEO-MECHANICS, INC. ELIZABETH, PENNSYLVANIA

GMI PROJECT NO. 21016

GeoMechanics, inc

Millennium III Professional Park, 600 Munir Drive P.O. Box 386, Elizabeth, PA 15037-0386 Phone: (724) 379-6300 • Fax: (724) 379-4242

May 12, 2021

KGA Partners, LLC 650 Washington Road, Suite 400 Pittsburgh, PA 15228

Attention: Mr. Hal A. Kester, Esq., CPA

Re: Geotechnical Engineering Investigation Meadows Landing Residential Development South Strabane Twp., Washington Co., PA GMI Project No. 21016

Gentlemen:

GeoMechanics, Inc. (GMI) is pleased to present the report of its subsurface exploration and geotechnical engineering investigation for the above-referenced project site. This report contains the data obtained from the subsurface exploration and laboratory testing program obtained during the present investigation as well as the relevant data presented in the previous report prepared by GMI in June 2012 and ACA in September 2006. Additionally, the report includes the interpretation and analysis of these data with respect to the anticipated dwellings and infrastructure, critical cuts and embankments; and our recommendations concerning the preliminary foundation support systems, safe cut and fill slopes, roadway pavement, material utilization and special subgrade treatment.

We wish to extend our appreciation for this opportunity to be of service to you. Should you have any questions or require additional information, please contact us.

Very truly yours,

GEO-MECHANICS, INC.

Ryan J. Kossol, M.S., P.E. Project Engineer

Javaid M. Alvi, Ph.D., President

TABLE OF CONTENTS

1.0	INTRODUCTION				
	1.1	5			
	1.2	Purpose and Objective of Investigation	1		
	1.3	Scope of Investigation	1		
2.0	FIELD DATA COLLECTION				
	2.1	Subsurface Exploration	3		
3.0	LABORATORY TESTING PROGRAM				
	3.1	Natural Moisture Content Test	6		
	3.2	Classification Test	7		
	3.3	Modified Proctor Compaction Test	7		
	3.4	California Bearing Ratio Test	8		
4.0	GENERAL SITE CONDITIONS				
	4.1	Project Location and Topography	9		
	4.2	Soil Type	9		
	4.3	General Geology	9		
	4.4	Coal Seams	10		
5.0	DISCUSSION AND EVALUATION OF SUBSURFACE CONDITIONS				
	5.1	General Subsurface Conditions	12		
	5.2	Specific Site Conditions at Critical Areas	16		
	5.3	Roadway Alignments	27		
6.0	GEOTECHNICAL DESIGN AND CONSTRUCTION				
	CO	INSIDERATIONS	30		
	6.1	Slope Stability Analyses	30		
	6.2	Stability of Cut Slopes	31		
	6.3	Stability of Fill Embankment Over Cut Slope	34		
	6.4	Stability of Embankments	35		
	6.5	Total and Differential Settlements of Embankments	39		
	6.6	Foundation Support Systems	40		
7.0	RECOMMENDATIONS				
	7.1	Fill Embankments	41		
	7.2	Cut Slope	45		
	7.3	Pavement Design	46		
	7.4	Preliminary Type and Depth of Foundation	47		
	7.5	Testing and Monitoring	48		
	7.6	Limitations	49		

Table of Contents (Cont'd) Page 2

APPENDICES:

TABLES

FIGURES

APPENDIX A Test Boring Logs

APPENDIX B Laboratory Test Results

APPENDIX C

Test Boring Location Plan and Geologic Cross-Sections

APPENDIX D

Slope Stability Analyses

APPENDIX E

Typical Embankment Subgrade Treatment Cross-Sections

APPENDIX F

Typical Details

1.0 INTRODUCTION

1.1 Authority

This geotechnical engineering investigation has been performed in accordance with our cost estimate submitted to Mr. Hal A. Kestler, President of KGA Partners, LLC on March 2, 2021. Acceptance of this proposal and authority to proceed with the investigation was given to us by Mr. Brad Witucki through his email dated March 23, 2021.

1.2 Purpose and Objective of Investigation

The purpose of the investigation was to determine and characterize the subsurface geomaterials and to assess the local ground water conditions at the critical areas of the project site as well as evaluate their impact on the proposed site grading, pavement design, development of infrastructure and general earthwork construction criteria. An additional objective was to present a set of preliminary recommendations, based on the evaluation of site conditions concerning the most suitable, cost effective and safe foundation support for the residential structures with relevant geotechnical design parameters, pavement design, safe cut and fill slope design, special subgrade treatment, material utilization as well as general earthwork construction considerations.

1.3 Scope of Investigation

The scope of work performed by GeoMechanics, Inc. to achieve the above objectives consisted of the following:

- review of the available geologic and mining maps and the published literature related to the general area of the site;
- review of the previously performed geotechnical investigation report by GMI for Phase I in June 2012 (GMI project 12022);
- performance of a geologic reconnaissance of the site;

- drilling a total of seventeen (17) test borings at the proposed critical cut and fill slope areas;
- performance of laboratory soil tests to characterize the subsurface soils and determine their physical parameters;
- preparation of generalized subsurface profiles (geologic cross-sections) based on the extrapolation of the borings as well as laboratory test data illustrating the type, approximate thickness and spatial distribution of soil and rock as well as ground water conditions;
- performance of geotechnical evaluation of the subsurface soils, bedrock, and ground water conditions pertaining to the site grading, pavement subgrade and buildable pads;
- performance of bearing capacity, slope stability, settlement and pavement analyses;
- preparation of a geotechnical investigation report documenting the data collected, analyses performed and conclusions drawn regarding to the behavior of subsurface materials with respect to the proposed site grading infrastructure and presenting a set of recommendations concerning the following:
 - -- preliminary type and depth of building foundations
 - -- geotechnical design parameters
 - -- cut and fill slope design
 - -- pavement design
 - -- special site preparation criteria
 - -- general earthwork construction considerations

2.0 FIELD DATA COLLECTION

2.1 Subsurface Exploration

The primary geotechnical feature of the site is its rugged topography which requires deep cuts and high fills to construct streets and flat buildable pads for the anticipated dwellings. This, in turn, requires evaluation of the materials into which cuts will be made and on which high embankments will be constructed. Determining the stability of the cut/fill slopes along with evaluation of the excavated material and its effective utilization over the site are the major geotechnical considerations. Therefore, the subsurface exploration performed for this investigation was focused on obtaining adequate subsurface information at the critical cut and fill areas and limited subsurface data at the anticipated building areas because the exact type and size of the buildings have not been finalized. The overall objective of the subsurface exploration was to identify the type, thickness and engineering properties of the soils; lithology and geomechanical characteristics of bedrock; and ground water conditions at the major cut and fill areas of the development site. To achieve this objective, a total of seventeen (17) test borings were drilled.

The locations of the borings are shown on the attached Test Boring Location Plan, Sheet No. 1 in Appendix C of this report. These borings were strategically located in an effort to develop generalized subsurface profiles across the critical cut and fill areas. The depths of the borings in the deep cut slope areas were selected to provide sufficient vertical overlap to develop accurate stratigraphic profiles. Similarly, the borings in the high fill slope areas were designed to provide sufficient information to develop slope stability models. Typically, the borings in the cut were extended to the proposed finished grade elevation. In the fill areas, the borings were terminated after encountering refusal on rock.

The depths of borings drilled at the site varied from a minimum of 10.0 feet to a maximum of 41.5 feet resulting in a total of 377.3 lineal feet of soil and rock sampled during this investigation. The borings were staked in the field and surface elevations were taken by Sheffler and Company, Inc. The elevations referenced in this report have been based on their surveys. The elevations of the borings are recorded on the Test Boring Records included in Appendix A and were also used to prepare the idealize Geologic Cross-Sections which are included in Appendix C of this report. The drilling of the borings for this investigation was performed by GeoMechanics, Inc. during the month of April 2021. All borings were logged by our geologists, and the boring logs for the current study are included in Appendix A of this report. The relevant GMI Boring Logs from the previous study for Phase I in 2012 are also included for reference in Appendix A-1 and the relevant ACA boring logs from the previous 2006 and 2011 studies are included for reference in Appendix A-2.

The pertinent boring information from the past and present investigations is summarized on Tables No. 1A and 1B included in this report, and the methodology used in the collection of subsurface data is discussed below.

2.1.1 Soil Sampling

The soil sampling program consisted of obtaining Split Spoon (disturbed) samples by conducting Standard Penetration Tests (SPT) while advancing the test boring through the soil zone in accordance with ASTM Designated Method 1586-84. The samples were collected at 3-foot intervals by a 2-inch O.D. Split Spoon Sampler that was driven 18 inches into the soil with blows from a 140-pound hammer falling a distance of 30 inches. The number of blows required to drive the sampler for each 6-inch interval was recorded, and the cumulative number of blows for the last two 6-inch intervals is designated as "Standard Penetration Resistance" (SPT-N values). This value generally gives an indication of the relative density of granular soils or consistency of fine-grained soils which, in turn, could be related to the shear strength and compressibility of the in-situ soils. The SPT N-values (blow counts) at various depths, and the description of the soils based on visual identification and modified by laboratory soil classification tests are recorded on the Test Boring Records in Appendix A and are also plotted on the Geologic Cross-Sections included in Appendix C. In addition to spoon samples, several disturbed bulk samples were also obtained from borings located at the cut areas to determine maximum dry density, optimum moisture content, and CBR values.

2.1.2 Rock Coring

Bedrock was sampled continuously in three (3) of the seventeen (17) borings drilled across the project site using a diamond bit with an NQ2 double-tube, rigid-type core barrel which provides a 1.99-inch diameter core (ASTM Method: D 2113-83). The rock core samples were visually

identified in the laboratory. The presence of limestone or calcareous rocks was detected by using acid tests. The rock description, the core recovery for each coring interval, and the Rock Quality Designation (RQD) values (expressed in percent) for each lithologic unit are recorded on the boring logs presented in Appendix A. The RQD values reflect the quality and fracture spacing of the rock and are calculated as a summation of all unbroken core samples of 4 inches or more in length divided by the total length of each lithologic unit. The core recovery percentage and RQD values together provide a qualitative understanding of the geomechanical properties of the bedrock and are especially useful in assessing the load carrying capacity and excavatibility of bedrock.

2.1.3 Ground Water Reading

Efforts were made to measure the depth to ground water table immediately upon completion of each boring and, again, after 24 hours provided the bore holes had not caved or were not filled in for safety reasons. The ground water readings are included on the Test Boring Records and are also plotted on the Geologic Cross-Sections. These readings are used to establish the ground water regime at the site. In addition, the loss or re-gain of the drill water was recorded on the boring logs.

3.0 LABORATORY TESTING PROGRAM

This task formed the second phase of data collection and material characterization and consisted of index properties tests that include moisture content, sieve and hydrometer, and Atterberg limit tests. The data obtained from these tests were used in conjunction with standard penetration test data (SPT N-values) obtained from the borings to correlate to shear strength, compressibility and permeability parameters of soils. In addition, material behavior tests consisting of Proctor Compaction and California Bearing Ratio (CBR) tests were performed on the bulk samples of anticipated fill material taken from the cut areas. The data from these tests provide the moisture content/density parameters that are used in monitoring the field density of compacted fill and preparation of soil samples for subsequent CBR tests. All of the soil laboratory testing was performed in-house by GeoMechanics, Inc. The individual tests performed are briefly described below with our interpretation of the test results. The test results are presented graphically in Appendix B (Figures B-1 through B-14) and summarized on Table No. 2 of this report. The relevant laboratory tests results from GMI's 2012 investigation are also included in Appendix B-1 of this report.

3.1 Natural Moisture Content Test (ASTM: D 2216)

Natural moisture content tests were performed on eight (8) representative jar samples and two (2) bulk samples to evaluate the in-place water content of the soils at the time of drilling. Moisture content, expressed as the ratio of the weight of water to the weight of dry solids, for each sample tested is recorded on the Grain-Size Distribution Test Reports, Figures B-1 through B-10 in Appendix B and summarized on Table No. 2 of this report. The soil tested showed a water content value varying between 4.7 and 21.3 percent for samples tested. These values correspond to dry to moist conditions based on an emperical scale of dry, damp, moist and wet. However, these conditions will usually vary depending on seasonal and local precipitation, fluctuation of ground water table, and on the depth below ground surface, and should be taken into consideration when working with soils during construction. In general, the moisture content data provide an indication about the physical condition of the in-place materials and, in turn, their strength and compressibility.

3.2 Classification Test (ASTM: D 2487)

The gradation (sieve and hydrometer) tests and the Atterberg Limits tests are used as the basis for classifying and identifying both granular and fine-grained soils. Together, they form what is commonly referred to as a Classification Test. A brief description of each test is given below.

3.2.1 Gradation Test (ASTM: D 422)

Ten (10) representative soil samples which were selected for the moisture content tests were also selected for conducting sieve and hydrometer tests. The data from these tests, in conjunction with the data obtained from the Atterberg Limits tests, were used to classify the soils according to the Unified Soil Classification System. These soil classifications are shown on the Grain Size Distribution Test Reports (Figures B-1 through B-10) and summarized on Table No. 2 of this report. Based on the laboratory test data, all ten (10) soil samples tested are classified as fine-grained silty clays (USCS classification CL).

3.2.2 Atterberg Limits Test (ASTM: D 4318)

The Atterberg Limits tests were conducted on the same ten (10) samples on which gradation testing was performed. The results of these tests are included on the Grain-Size Distribution Test Reports (Figures B-1 through B-10) in Appendix B and summarized on Table No. 2. The results have been used in conjunction with the results of the sieve and hydrometer analysis to classify the soils according to the Unified Soil Classification System and the American Association of State Highway and Transportation Officials Methods (AASHTO: M1450-82). The Liquid Limits (LL) of the soils tested range from 33 to 49 percent with a Plastic Index (PI) ranging from 12 to 27 percent. This indicates that the in-situ soils are slightly to moderately plastic.

3.3 Modified Proctor Compaction Tests (ASTM: D 1557)

Two (2) Modified Proctor Compaction tests (ASTM: D-1557-12, Method C) were performed on bulk samples taken from test boring TB-5 and TB-15. The tests were conducted to determine the density-moisture content relationship, which forms the basis for field compaction control, and to prepare the specimen for the CBR test. The maximum dry density of the test samples ranged from 123.7 PCF at 12.7 percent optimum moisture to 127.3 PCF at 10.4 percent optimum moisture and are presented on Figures B-11 and B-12 in Appendix B. It may be pointed out that the natural moisture content of the soil tested was below the optimum moisture content.

3.4 California Bearing Ratio (CBR) Tests (ASTM: D 1883)

The CBR tests were conducted on the same residual soil samples on which the Compaction tests were also performed. The optimum moisture content and density values obtained from the Compaction tests were used in the preparation of the CBR test specimens. The purpose of the CBR tests was to determine the shear strength of the compacted soil that will form the pavement subgrade. The CBR value is used in designing the pavement thickness of the roadways. The test results are presented in the form of a stress-penetration curve on Figures B-13 and B-14 in Appendix B of this report. In the samples tested, the laboratory-determined CBR value at 0.01 inch and 0.02inch penetration varied from 4.3 to 2.4 and 4.5 to 2.6, respectively. Therefore, for common fill material, a CBR value of 3 appears to be the representative value for the pavement design.

4.0 GENERAL SITE CONDITIONS

4.1 Project Location and Topography

Topographically, the site is comprised of a north-south trending ridge with sides sloping mildly towards the north and south-southeast culminating in two (2) gullies where intermittently flowing creeks are located. The following site assessment is based partly on review of the relevant published geomorphic, soil and geologic and mining maps and literature and partly on site-specific subsurface information obtained during the past and present investigations.

The project site is bounded by PA Route 19 (S.R. 0019) along the east side, a county road along the north and west sides, and an undeveloped tract of property along the south side (Figures 1 and 2). The ground surface elevation within the project area varies from about $1310\pm$ feet at the top of the hill to about $1100\pm$ feet near the creek along the west side of the site. The intermittent creeks flow into tributaries of Chartiers Creek. Some cut and fill have been performed during previous development phases in the area that lies immediately adjacent to S.R. 0019.

4.2 Soil Type

According to U.S. Soil Conservation, the soil type in this area belongs to "Guernsey-Culleoka-Dormont-Library association" (see Figure 3). These are moderately well-drained, nearly level to sloping soils on terraces and in the uplands. They are formed in residuum of weathered shale, siltstone, sandstone and limestone. Except near the stream bank where the soil type is mostly alluvial (silty clay to clayey sand and gravel), the natural soil mantle in the project area is dominantly residual and colluvial in origin. The average thickness of the natural soil is about 15 feet. Strength tests performed on similar soils from the nearby area as well as during the previous study for Phase I suggest the existing residual soils have moderate shear strength, low compressibility and low permeability.

4.3 General Geology

Figure 4 represents the geologic map of the project area and its environs and indicates that the subcropping bedrock below the soil mantle is sedimentary in origin and belongs to the Washington and Waynesburg Formations of the Dunkard Group along with the Uniontown and Pittsburgh Formations of the Monongahela Group which are Lower Permian and Upper Pennsylvanian in age, respectively.

The Washington Formation is typically divided into Upper Limestone Member, Middle Member and Lower Limestone Member with Washington coal seam as its basal unit. A generalized stratigraphic column with descriptions of the various rock units is presented on Figure 5. The Waynesburg Formation is also divided into the Upper Member, Middle Member and Lower Member. The Little Washington coal bed separates the Upper Member from the Middle Member and the Waynesburg "A" coal marks the dividing bed between the middle and the underlying Lower Member, and the Waynesburg coal bed separates the Lower Member from the underlying Uniontown Formation. The Uniontown Formation is divided into the Upper Member and Lower Member with the Uniontown coal bed as the dividing layer between the Uniontown Formation and the next lower Pittsburgh Formation. Only the Upper Member of the Pittsburgh Formation is located at the project site and subcrops at the toe of the hillsides.

Structurally, the site is located on the eastern limb of the northeast-southwest trending axis of the Washington Anticline that plunges towards the northeast. As a result, the bedrock strata are dipping towards the southeast at an average rate of 3 percent that will result in approximately 50 feet drop in the bedrock strata proceeding from the northern limit of the project site to the southern limit to S.R. 0019 (see Figures 4 and 6). This could result in different rock types exposed at the bearing elevations of buildings and pavement.

4.4 Coal Seams

The Pittsburgh coal, an extensively mined coal seam in this area, is available under the site at an elevation of 860 feet to $800\pm$ feet (say, average $830\pm$ feet) with a dip of 2 to 3° towards the southeast. The coal has been deep mined under the site by Willet Coal Company utilizing the room-and-pillar method (see Figure 7). The mine voids will remain at a depth of 240 feet at the creek levels to $460\pm$ feet at the hilltops of the property, which is significantly below the proposed site grades. Therefore, the risk of damage to the structures due to subsidence caused by any future collapse at the mine level is slight at this site.

The Waynesburg coal, which is available under the site at an elevation ranging from $1080\pm$ feet to $1140\pm$ feet, is not known to have been deep mined in this area (see Figure 8). But it might have been strip-mined locally where it crops out along the sloping hillside and along the gully banks. At still higher elevation of about 1130 to $1180\pm$ feet, a thin seam of Waynesburg "A" Coal may also be encountered in the soil or the rock zone. This seam is often bony and impure and is not known to be mined using deep mining method in this area. Other thin coal beds of the Waynesburg/Washington formations may be encountered at a higher elevations (about $1260\pm$ feet). These coal seams are impure and have no economic value and, therefore, rarely strip mined and practically never deep mined.

5.0 DISCUSSION AND EVALUATION OF SUBSURFACE CONDITIONS

In this section the data obtained from the subsurface exploration and laboratory testing programs conducted during the present and previous (June 2012) investigations by GeoMechanics, Inc. and the relevant data obtained by ACA during their geotechnical investigations of September 2006 have been utilized to evaluate the geotechnical aspects of the subsurface geomaterials as they relate to the safe construction of embankments, cut slopes and foundation bearing materials. Considering the topographic feature of the site and the needed site grading to develop the buildable pads, general subsurface conditions across the entire project and specific conditions at the critical cut and fill embankment area are discussed separately as follows.

5.1 General Subsurface Conditions

The three (3) basic components of subsurface geomaterials namely, soils, bedrock and ground water across the entire project site are discussed separately as follows.

5.1.1 Soils Conditions

Based on the data collected from a total of thirty-three (33) borings, B-3, B-4, B-6 through B-9, GB-18 through GB-25 and TB-1 through TB-17, it appears the site is covered with a soil zone averaging 18 feet. The soil mantle consists primarily of residual soils with isolated areas where some colluvial soils overlay the residual soils. However, at the western-southwestern part of the site considerable fill on top of residual soils had been placed during the previous site grading operations to develop the present grades and small amounts of this fill were encountered in several test borings in that vicinity.

The residual soils are derived by in-place weathering of rock; therefore, their composition is affected by the lithology of parent rock and the intensity of weathering. Typically, the upper part of the residual soil layer regardless of the parent bedrock is fine-grained silty clay with sand as the secondary constituent. With increasing depth as the intensity of weathering decreases, the soils become more coarser grained clayey sand to clayey gravel with some silt except when bedrock is claystone/clayshale or limestone. The weathered product of claystone/clayshale and limestone rocks remains fine-grained silty clay, some of which may be highly plastic (fat clay). The colluvial soils were generally fine-grained in composition and are classified as silty clay with variable percentages of sand as the secondary component. In general, the soil mantle across the site will form adequate common fill when properly moisture conditioned. As a foundation bearing medium, residual soils will provide moderate strength and compressibility and will be suitable for support of shallow foundations designed with a net allowable bearing capacity of 2 KSF. When properly placed and compacted, the common fill can also provide 2 KSF net allowable capacity. However, the long-term settlement will depend on the thickness of fill, underlying residual/colluvial soil and the "rest period" to allow the engineered fill to consolidate under self-weight.

Embankments constructed using the soil material available from the cut areas will provide moderate effective shear strength parameters, cohesion (c) in the range of 200 to 300 PSF with corresponding effective angle of internal friction in the range of 26 to 28 degrees. As a pavement subgrade, the on-site soils both in-situ and compacted fill will make average material capable of providing a California Bearing Ratio (CBR) of 3.

5.1.2 Bedrock Conditions

The existing ground surface within the development area varies from a highest elevation of $1315\pm$ feet to a lowest elevation of $1105\pm$ feet, a relief of about $210\pm$ feet. One (1) boring, GB-5, from the previous investigation was located near the highest point of the site and drilled to a depth of 120 feet or elevation $1188\pm$ feet. A graphical distribution of the various rock units within this interval is presented on Geologic Cross-Section P-P. It is apparent from this geologic section that the bedrock underlying the soil mantle consists of interbedded layers of shale, limestone, claystone and sandstone with thin coal seams. The stratigraphic sequence shown on the geologic cross-section consists of, from top to bottom, as follows:

Fine-Grained Sandstone (Elevation 1293 to 1283±, Borings GB-5, TB-11):

It is thinly laminated to thickly bedded, broken to massive and medium hard to hard. This rock layer extends down to elevation $1283\pm$ feet along the southern limit of the development site. The core recovery in this layer is good

but RQD is very poor (21%). Therefore, excavation into this rock can be made without blasting.

Silty Shale (Elevation 1284 to 1276±, Boring GB-5):

This approximately $8\pm$ foot thick rock unit is thinly laminated, broken and soft. It is typically moderately weathered with thin highly weathered zones. In spite of good core recovery, RQD rating is very poor (0%). Accordingly, the shale has moderate strength. Excavation into this rock unit should not be difficult.

Carbonaceous Shale & Coal (Elevation 1283 to 1271±, Boring GB-5, TB-11):

This rock layer is thinly laminated, highly to completely weathered, very broken and very soft. The core recovery was good and the RQD rating (0%) was very poor. As a result, it has low strength and can be excavated easily. Where present, within 5 feet of the finished floor elevation and 3 feet below the footings and pavement, carbonaceous shale should be overexcavated and replaced with properly compacted suitable inert material.

Limestone & Claystone Interbeds (Elev. 1271 to 1249±, Boring GB-5, TB-11):

It is very thinly to thinly bedded, very broken to blocky, limestone seams are hard and claystone seams are very soft, which resulted in very poor core recovery and RQD values. Excavation into this rock can be made using mechanical equipment. Again, the excavated material will contain large-size limestone boulders in a clayey matrix.

Carbonaceous Shale & Coal (Elevation 1249 to 1242±, Boring GB-5, TB-4):

This stratum is thinly laminated, very broken to broken and soft to medium hard. This coal seam is 3 to 18 inches in thickness and forms the basal section of this pyrite rich carbonaceous shale. Core recovery values are fair to good, but RQD is very poor. Therefore, this rock layer has low to moderate strength. The coal is bony in nature and is, most probably, the Little Washington Coal seam.

Sandstone/Siltstone/Shale (Elev. 1242 to 1212±, Borings GB-5, TB-4):

This rock interval is comprised of fine-grained sandstone and silty to sandy shale layers. There are considerable lateral and vertical gradations within this group and the various araneous rock units grade into one another. This rock interval is thinly laminated to very thinly bedded. Rock drill cores were broken to blocky and medium hard. The core recovery values were excellent and the RQD values varied between 0 percent in TB-4 and 26 to 55 percent in GB-5, which are rated as very poor to fair. In general, this rock interval has moderately high strength and excavation into the shale and siltstone rock can be made without much difficulty using mechanical equipment while use of presplitting and hoe ramming will most likely be needed in the sandstone rock strata, if encountered. The excavated shale and siltstone rock when placed in embankment and compacted will breakdown into smaller pieces and will generate considerable fines and may not be suitable for rock needed for the toe benches but will provide good common fill material. The sandstone rock is unlikely to break down and would provide competent material for use in a rock toe.

Limestone (Elevation 1212 to 1205±, Borings GB-5):

A thinly to thickly bedded limestone was sampled from elevation 1212 to $1205\pm$ feet in Boring GB-5. Based on the current site layout, it does not appear this layer will be exposed in any of the cuts, making it a non-factor for this project.

Siltstone/Shale/Claystone (Elevation 1198 to 1188±, Borings GB-5, TB-1):

This layer is sandwiched between the upper and lower limestone benches. This rock unit is thinly laminated to thinly bedded, broken to blocky, soft to medium hard and moderately to completely weathered. It does have about $1\pm$

foot of pyritic carbonaceous shale at the bottom which should be excavated and removed, and the excavated area backfilled with suitable inert material, if encountered at subgrade elevation for pavement or floor slab/footing elevation at buildings.

Limestone (Elevation 1212 to 1205±, Borings TB-1):

It is thinly to thickly bedded, blocky to massive, hard, and slightly to completely weathered. Core recovery is excellent while RQD is poor (38%) likely due to sporadic clay seams throughout. Excavation into this rock can be made using mechanical equipment. Again, the excavated material will contain largesize limestone boulders which can be used in the rock toes within a clayey matrix.

5.1.3 Ground Water Conditions

Stabilized ground water levels were measured in eight (8) of the test borings ranging from 7.2 feet (Elev. 1248.9 feet) in Boring TB-4 to 31.4 feet (Elev. 1180.2 feet) in Boring TB-5. No static ground water was encountered in the remaining nine (9) test borings; however, perched ground water tables can be expected, the uppermost generally coinciding with soil-rock contact and confined to coal seams or jointed rocks with high hydraulic conductivity such as limestone. Ground water may seep out along these horizons in some of the cuts and may require treatment to collect and channel the seepage water to the nearest stormwater inlets.

Embankment areas will also require underdrains in the bonding benches and rock toe benches to collect and remove the water in order to avoid saturation and the resulting instability.

5.2 Specific Site Conditions at Critical Areas

5.2.1 Area 1: Lot Numbers 267 through 297; Borings TB-1, TB-2, TB-3

This area is located at the far southern end of the property and includes lot numbers 267 through 297. A total of three (3) standard test borings, TB-1 through TB-3, were drilled in Area

1 during the present investigation. The data from these borings has been plotted on the generalized Geologic Cross-Sections A-A and B-B on Sheet No. 2 in Appendix C of this report. The lots at the west end of this area will be created by constructing a $50\pm$ foot high fill embankment (near lot 272) while the lots at the south end of the area (near lot 276) will be created by constructing a $45\pm$ foot deep cut slope. Minor cuts and fills will be required across the remaining lot areas.

Soils Conditions

A review of these cross-sections indicates that the area over which the high embankment will be constructed is covered with a moderately thick soil zone of about $17\pm$ feet. The soil zone in this area is comprised entirely of residual soils. The upper residual soils are classified as a finegrained silty clay with varying amounts of sand and gravel and a medium to very stiff consistency. The lower residual soil layer, which is essentially a decomposed or highly weathered bedrock was classified as a granular silty gravel with a very dense relative density. Therefore, the residual soils have moderate to high shear strength and moderate to low compressibility and the bonding benches could be constructed in these soils. The toe bench will typically be extended down to bedrock where the rock is relatively shallow; where the residual soils are exceptionally thick, the bottom of the toe bench may have to be constructed in the lower more competent residual soil zone.

The area where the deep cut will be constructed also consists entirely of residual soils. The uppermost soil layer consists of medium dense to very dense carbonaceous shale and coal. Underlying the carbonaceous shale and coal are alternating layers of decomposed shale and sandstone bedrock which vary from fine-grained silty clay to granular clayey sand. These soils have a hard consistency when fine-grained and a very dense relative density when granular. All soils removed from this cut slope beneath the carbonaceous shale and coal can be used as fill elsewhere on the site while the coal and carbonaceous shale can be used as fill in the deeper part of the embankments where its pyritic traits will not interfere with the roadways and building structures.

Bedrock Conditions

Bedrock was encountered in Boring TB-1 at the base of the proposed cut slope. The upper bedrock consisted of a very soft to soft, broken to blocky siltstone/silty shale. This 5-foot thick layer should be relatively easy to excavate using methods such as rock teeth on an excavator,

ripping with a dozer, or hoe-ramming depending on the degree of hardness. The lower bedrock stratum, located at the finished floor elevation of the lots, is a broken to blocky, hard limestone. This layer will be much harder to excavate and will likely need to be hoe-rammed or blasted when encountered.

Ground Water Conditions

Stabilized ground water was encountered in Boring TB-1, located in the cut area, at a depth of 27.3 feet which corresponds to elevation $1207\pm$ feet. The stabilized groundwater was measured at a relatively shallow depth confined to the soil zone and represents water perched on top of the lower less permeable soil or rock. It is typically much shallower near the anticipated toe of the embankment then at the upslope area. The gradient of this uppermost perched water table is from east to west and, in general, parallels the existing ground surface slope. It is likely to rise after the placement of new fill and could adversely impact the stability of the embankment. Therefore, underdrains suitability located in the bonding benches will be needed to depress the groundwater table and avoid saturation of the fill as well as the subgrade material as water is generally the major cause of embankment slides. Additionally, any groundwater seepage coming from a cut slope will need to be contained.

5.2.2 Area 2: Lot Numbers 250 through 266; Borings GB-19 through GB-25

This area is located at the southwest corner of the property and includes lot numbers 250 through 266. A total of six (6) standard test borings, GB-19 through GB-25, were drilled in Area 2 back in 2012 for the proposed site conditions during the previous 2012 investigation. The data from these borings has been plotted on the generalized Geologic Cross-Sections C-C through E-E on Sheet No. 3 through 5 in Appendix C of this report. The lots in this area will be located on top the previously constructed fill embankments. Recommendations for constructing this fill embankment were provided in GMI's previous GEIR from 2012. During construction, ACA Engineering was the geotechnical representative retained by KGA Partners to monitor the site work. Minor cuts and fills will be required to reshape the grading at this location for the current development.

5.2.3 Area 3: Lot Numbers 114-152, 200-249; Borings TB-5, TB-7-10, TB-12, TB-14, B-9

This area is located along the western half of the property and includes lot numbers 114 through 152 and 200 through 249. A total of six (6) standard test borings, TB-5, TB-7 through TB-10, TB-12, and TB-14, were drilled in Area 3 during the past and present investigations. The data from these borings has been plotted on the generalized Geologic Cross-Sections F-F, G-G, H-H, J-J, K-K, and L-L, on Sheet No. 6-11 in Appendix C of this report. The lots along the north and west sides of the road in this area will be created by constructing up to $60\pm$ foot high fill embankments while the lots along the east and south sides of the roadway will be created by constructing up to $40\pm$ foot deep cut slopes.

Soil Conditions

A review of these cross-sections indicates that the area over which the high embankment will be constructed is covered with a moderately thick soil zone varying from $10\pm$ to $16.5\pm$ feet thick. The soil zone is comprised of man-made fill, colluvial, and residual soils. The fill soils were encountered in Boring TB-12, which is located at the toe of the proposed embankment near an area that was previously developed. These soils are $3\pm$ feet thick at the boring location and are classified as a fine-grained silty clay with "trace" sand and "trace" gravel and a stiff consistency. The fill soils have low shear strength and will likely be removed during construction of a rock toe. Colluvial soils were encountered in Borings TB-10 and TB-13 with a thickness ranging from $3.0\pm$ to $7.5\pm$ feet. The colluvial soils are classified as a fine-grained silty clay with variable amounts of sand and gravel and have a medium to stiff consistency indicating low shear strength and high compressibility. Thus, they will be removed as needed when constructing the rock toe and bonding benches for the new embankment.

The upper residual soils are comprised of both a fine-grained silty clay with varying amounts of sand and gravel and a granular silty to clayey sand and gravel. These soils have a medium to very stiff consistency when fine-grained and a medium dense relative density when granular. The lower residual soil layer, which is essentially a decomposed or highly weathered bedrock was classified as a granular silty sand to silty gravel with a medium dense to very dense relative density. Therefore, the residual soils have moderate to high shear strength and moderate to low compressibility and the bonding benches could be constructed in these soils. The toe bench will typically be extended down to bedrock where the rock is relatively shallow; where the residual soils are exceptionally thick, the bottom of the toe bench may have to be constructed in the lower more competent residual soil zone. Additionally, a $3\pm$ foot coal seam (Washington coal) was encountered in Boring TB-13 at approximate elevation $1225\pm$ which corresponds to the elevation of the cut/fill transition zone seen on Geologic Cross Section L-L. The recommended slope treatment at this location, which will be discussed later in this report, will likely be influenced by this coal seam.

The area where the deep cut will be constructed also consists of both colluvial and residual soils. The uppermost colluvial soil layer consists of medium to stiff fine-grained silty clay. An upper layer of residual soil was encountered directly beneath the colluvial soils. This upper residual layer is comprised of fine-grained silty clay with "trace" amounts of sand and gravel and a stiff to very stiff consistency. Directly beneath the upper layer of residual soils, a $6\pm$ foot thick layer of coal and carbonaceous shale was encountered at approximate elevation $1200\pm$ in both cut borings (TB-5 and TB-14). This layer has a dense to very dense relative density. As stated previously, the coal and carbonaceous shale excavated during construction of the cut slope can be used as fill within the deeper parts of the fill embankments but should not be used when placing fill within 5 feet of floor slab, footing, or pavement subgrade elevation. Lastly, a lower layer of residual soil was encountered which is comprised of fine-grained silty clay and granular clayey sand with varying amounts of sand and gravel. This layer is essentially a decomposed claystone and limestone, which has a hard consistency when fine-grained and very dense relative density when granular depending on the degree of weathering. This layer has moderate to high shear strength and low compressibility and will form the finished floor and foundation subgrade elevation for the proposed buildings along the south and east sides of the roadway.

Bedrock Conditions

Although bedrock was not sampled in any of the borings, the SPT N-values at the two cut slope borings (TB-5 and TB-14) reflect that the relative density of the lower residual soil is very dense and likely will require excavation methods such as ripping with a dozer or hoe-ramming to achieve the desired finished grade.

Ground Water Conditions

Ground water was encountered in four (4) borings in this area, ranging from a depth of 7.6± feet in Boring TB-10 (Elev. 1137±) to a depth of 31.4 feet in Boring TB-5 (Elev. 1180±). The stabilized groundwater was measured at a relatively shallow depth confined to the soil zone and represents water perched on top of the lower less permeable soil or rock. It is typically much shallower near the anticipated toe of the embankment then at the upslope area. The gradient of this uppermost perched water table, in general, parallels the existing ground surface slope. It is likely to rise after the placement of new fill and could adversely impact the stability of the embankment. Therefore, underdrains suitability located in the bonding benches will be needed to depress the groundwater table and avoid saturation of the fill and the subgrade material as water is generally the major cause of embankment slides. Additionally, the coal seams and limestone layers such as those encountered in the cut slope borings TB-5 and TB-14 are considered good ground water carriers. Surface ground water seepage along the cut face can be expected along the limestone/claystone and coal contact lines. However, because of the limited recharge area, the amount of seepage is expected to be small.

5.2.4 Area 4: Lot Numbers 324-335; Boring TB-9

This area is located in the middle of the property and includes lot numbers 319-335. Only one (1) standard test boring, TB-9, was drilled in Area 4 during the present investigation. The data from this boring has been plotted on the generalized Geologic Cross-Section I-I on Sheet No. 9 in Appendix C of this report. The lots along the west sides of the roadway in this area will be created by constructing up to $35\pm$ foot high fill embankments while the lots along the east side of the roadway will be created by making minor cuts.

Soils Conditions

A review of these cross-sections indicates that the area over which the fill embankments and the minor cuts will be constructed is covered with a moderately thick soil zone of about $20\pm$ feet. The soil zone is comprised of colluvial and residual soils. A $9\pm$ foot thick colluvial soil zone was encountered in Boring TB-9. The colluvial soils are classified as a fine-grained silty clay with stiff consistency to a granular clayey sand with medium dense relative density. These soils have low shear strength and high compressibility and will be removed as necessary when constructing the rock toe and bonding benches for the new embankment.

The residual soils are comprised of a silty to clayey gravel and sand with medium dense to very dense relative density. Therefore, the residual soils have moderate to high shear strength and moderate to low compressibility and the bonding benches could be constructed in these soils. The toe bench will likely be keyed into this competent residual soil layer at this location due to the greater depth to bedrock.

Bedrock Conditions

Bedrock was not sampled in this area of the site; however, it is expected to be encountered at a depth of $20\pm$ feet.

Ground Water Conditions

A stabilized ground water level was encountered at a depth of 10.2 feet in Boring TB-9. It is, however, recognized that perched water table does fluctuate depending upon the seasonal precipitation. It is also recognized that ground water regime will change after the site grading has been completed and may be much higher. Therefore, it will be prudent to incorporate underdrains in the bonding benches and toe bench in order to depress the ground water table and avoid the saturation of the embankment fill, thus improving the stability of the embankment.

5.2.5 Area 5: Lot Numbers 300-323; Borings TB-4, TB-6, TB-11, TB-13, TB-16, GB-5, B-3, B-8

This area is located along the western edge of the property and includes lot numbers 300-323. A total of eight (8) standard test borings, were drilled in Area 5 during the past and present investigations. The data from these borings has been plotted on the generalized Geologic Cross-Sections L-L and O-O through S-S on Sheet No. 11 and 13-17 in Appendix C of this report. The lots along the south and west sides of the roadway in this area will be created by constructing deep cut slopes while the lots along the north and east side of the roadway will be created by constructing fill embankments up to $35\pm$ feet high.

Soil Conditions

A review of these cross-sections indicates that the area over which the fill embankments will be constructed (Section L-L, O-O, S-S) is covered with a moderately thick soil zone varying from $11\pm$ to $14\pm$ feet thick. The soil zone is comprised of man-made fill, colluvial, and residual soils. The fill soils were encountered in Borings TB-6 and B-8, which are located near the previously developed area. It is also possible that since the coal is so shallow at this location that these soils were backfilled after the coal was locally stripped from this area. These soils are 3 feet thick and are classified as a fine-grained silty clay with varying amounts of sand and gravel and a stiff consistency. The fill soils have low shear strength and will likely be removed during construction of a rock toe and bonding benches. Colluvial soils were encountered in Boring TB-13 and TB-16 with a thickness of $3\pm$ feet. The colluvial soils are classified as a fine-grained silty clay with varying amounts of share strength and myle area and a medium to stiff consistency. These soils have low shear strength and gravel area as a fine-grained silty clay with varying amounts of sand and gravel and a medium to stiff consistency. These soils have low shear strength and high compressibility and will also be removed as much as required when constructing bonding benches for the new embankment.

The upper residual soils at the fill embankments are classified as a fine-grained silty clay with variable amounts of sand and gravel as secondary constituents, while the lower residual soils are comprised of a granular clayey gravel which is essentially a decomposed bedrock. Additionally, a coal/carbonaceous shale seam was encountered at approximate elevation $1205\pm$ in Borings B-8 and $1225\pm$ at TB-13, likely corresponding to the Waynesburg and Washington coal seams, respectively. The residual soils typically have a very stiff to hard consistency when fine-grained and a very dense relative density when granular. Therefore, the residual soils have moderate to high shear strength and moderate to low compressibility and the bonding benches could be constructed in these soils. The toe bench will typically be extended down to bedrock where the rock is relatively shallow; where the residual soils are exceptionally thick, the bottom of the toe bench may have to be constructed in the lower more competent residual soil zone.

A review of these cross-sections indicates that the area where the cut slopes will be constructed (Section L-L, O-O, P-P, Q-Q, R-R) is covered with a moderately thick soil zone varying from $10\pm$ to $25\pm$ feet thick. The soil zone is comprised of both colluvial and residual soils. The

colluvial soils are classified as a fine-grained silty clay with varying amount of sand and gravel. These soils vary range in thickness from 3 to $9\pm$ feet and have a medium to stiff consistency. These soils can be used as common fill elsewhere on the site, provided they are placed under proper compaction and moisture control.

The upper residual soils at the cut slope locations are also classified as a fine-grained silty clay or a granular clayey sand depending on the degree of weathering. These soils typically range in thickness from 3 to 12± feet and have a medium stiff to hard consistency when fine-grained and a loose to dense relative density when granular. A coal/carbonaceous shale seam was encountered at elevation 1200± in Boring TB-14, likely corresponding to the Waynesburg coal seam. As previously stated, the coal and carbonaceous shale material excavated during cut slope construction can be used as fill in the lower portions of the embankments while the remaining residual soil can be used in all locations, provided they are placed under proper compaction and moisture control. The lower residual soils at these locations are comprised of both a fine-grained silty clay or a granular clayey sand/gravel depending on the parent bedrock and the degree of weathering. Soils derived from limestone and claystone tend to be more clayey compared to those derived from sandstone or siltstone. These soils have a hard consistency when fine-grained and a very dense relative density when granular and have moderate to high shear strength and low compressibility making them ideal for use as a bearing stratum for the floor slab subgrade and building foundations.

Bedrock Conditions

Bedrock was only sampled in three (3) of the cut slope borings (TB-4, TB-11, and GB-5). Bedrock excavated from the cut slopes at geologic cross sections Q-Q and R-R will be very similar and include in descending order sandstone, carbonaceous shale/coal, and limestone. The sandstone bedrock is thinly laminated to thickly bedded, broken to massive, and medium hard to hard indicating this rock layer will likely need to be ripped with the dozer or hammered with the hoe-ram to excavate. This rock can be utilized in the construction of the rock toes throughout the site, assuming it is broken down the proper size. The coal/carbonaceous shale seam encountered at approximate elevation $1275\pm$ in TB-4 and TB-11 is thinly laminated, very broken to broken, and very soft, indicating that excavation through this material should be relatively easy. As previously stated, the coal and carbonaceous shale can be utilized as fill in the deeper parts of the fill embankments as to not interfere with the building structures and roadways. Approximately 4 to $5\pm$ feet of limestone beneath the coal seam will need to be excavated to reach the proposed finished grade at these locations. This limestone, which has sporadic clay seams throughout, is thinly to thickly bedded, broken to blocky, and very soft to hard. Excavation into this rock layer may be difficult at times and will require hoe-ramming but can also be very easy when soft clay seams are encountered. The limestone boulders removed from this cut can be utilized in rock toes throughout the site, provided they are broken down to the proper size.

The bedrock encountered in TB-4 (Section R-R) consists of an upper layer of shale which is thinly laminated to very thinly bedded, broken to blocky, and medium hard followed by a lower layer of siltstone/sandstone that is very thinly to thinly bedded, broken to blocky, and medium hard. All of these rock units should be relatively easy to excavate and will easily break down into very good fill material under the weight of the compaction equipment. This rock can be utilized anywhere in the fill slopes but is not suitable for use in the rock toe benches.

Ground Water Conditions

Stabilized ground water levels were measured at depths ranging from 7.2 feet in TB-4 to 32.8 feet in TB-11 with corresponding elevations of $1249\pm$ and $1273\pm$, respectively. Both of these readings correspond closely to the elevations of the coal seams, indicating the coal is causing a perched water table at these locations. Slight seepage coming from the cut slopes is likely to occur at these elevations but should not pose any major issues during construction.

5.2.5 Area 6: Lot Numbers 100-113, 153-159; Borings TB-15, TB-17, P-3

This area is located along the northern edge of the property and includes lot numbers 100-113 and 153-159. A total of three (3) standard test borings were drilled in Area 6. The data from these borings has been plotted on Geologic Cross-Sections M-M through O-O on Sheet No. 12 and 13 in Appendix C of this report. The three easternmost lots and the seven southernmost lots in this area will be created by constructing deep cut slopes in the range of 30 to $50\pm$ feet while the northernmost lots will be created by constructing fill embankments up to $40\pm$ feet in height.

Soil Conditions

A review of these cross-sections indicates that the area over which the fill embankments will be constructed (Section N-N) is covered with a moderately thick soil zone of about $15\pm$ feet thick. The soil zone is comprised entirely of residual soils. The upper residual soils are comprised of a granular clayey sand with loose to medium dense relative density while the lower residual soils are comprised of a granular silty gravel with very dense relative density. These lower residual soils are essentially a decomposed sandstone bedrock with high shear strength and low compressibility and will likely form the bearing strata for the proposed rock toe bench.

The soil zone at the cut slope locations consists of both colluvial and residual soils. The colluvial soil zone will be approximately $3\pm$ feet thick along the cut slope face and is classified as a fine-grained silty clay with medium to stiff consistency and will have little to no impact on the proposed structures. The upper residual soil zone at the cut slopes also consists of a fine-grained silty clay with "some" sand and "trace" to "little" gravel and has a stiff to hard consistency. The lower residual soils which will form the subgrade elevation for the proposed buildings and roadways consist of a very dense clayey sand which is essentially decomposed shale bedrock. These soils have moderate to high shear strength and low compressibility and will be suitable for use as a bearing stratum for floor slabs, pavement, and building foundations.

Bedrock Conditions

Bedrock was not sampled in any of the three (3) borings that were drilled within this area. However, the estimated bedrock is anticipated at a depth of $15\pm$ at the fill embankments and 25 to $30\pm$ feet at the cut slope locations. If bedrock is encountered within the depth of the proposed cut, it should be in a highly weathered, near soil state and will likely be very easy to excavate.

Ground Water Conditions

Only one (1) stabilized ground water reading was encountered in the borings in this area, as the remainder of the borings were dry. Stabilized ground water was encountered at a depth of 26.1 in Boring TB-15 which corresponds to elevation $1164\pm$. Seeing how this single reading was so deep near the top of rock and there were no other readings, ground water is not expected to be a

significant issue in this area. However, it should be realized that the water tables are expected to rise due to seasonal and local precipitation and any future excavation extending below these water tables could cause significant water seepage. Additionally, the addition of new fill in the area of the fill embankments will likely cause the groundwater level to rise in the future.

5.3 Roadway Alignments

Road 01

A review of Centerline Profile for Road 01 indicates very little cut and fill will be needed to achieve the desired roadway subgrade from Station $0+00\pm$ to Station $10+00\pm$. Therefore, the pavement subgrade will consist of existing soils or $0\pm$ to $5\pm$ feet thick new fill. From Station $10+00\pm$ to Station $15+50\pm$, the roadway will be constructed on newly placed fill, with the composition of new fill expected to be similar to that of the existing soil cover. From Station $15+50\pm$ to Station $17+30\pm$, a cut into the residual soils will be needed to reach the roadway subgrade. Thus, it is apparent from the above discussion that the pavement subgrade will vary from the upper part to the lower part of the existing soil zone to newly placed compacted fill. Subgrade should be prepared following the criteria presented in Site Preparation, Section 7.1.3 and the pavement can be designed using CBR value of 3, which is a typical value for subgrade consisting of silty clay to clayey sand soils.

Road 02

This road is approximately $1750\pm$ feet long and will traverse over the higher elvations along the east side of the site. As a result, practically the entire roadway will be constructed in cut. The depth of cut will range from less than 5 feet to as much as $30\pm$ feet near Station $10+50\pm$ along the centerline. The roadway subgrade from Station $0+00\pm$ to $8+00\pm$ will consist primarily of residual soils with the exception of a small $100\pm$ feet stretch from Station $1+25\pm$ to Station $2+50\pm$ where cut may extend a few feet into bedrock. The subgrade soils will vary from medium stiff silty clay where the cut is shallow to and medium dense to very dense clayey sand and clayey gravel (rock fragments) where the cut extends into the basal part of the residual soil zone. However, the pavement design should be based upon the more conservative value associated with the upper part of residual soil mantle. From approximate Station $7+75\pm$ to Station $13+00\pm$, the pavement subgrade will predominantly consist of medium hard to hard limestone. While this rock forms excellent pavement subgrade, excavation into the rock to install utilities may require presplitting and hoe ramming. Due to the blocky nature of limestone, overexcavation is most likely to occur and additional quantities of base course will be needed to fill in the depressions. It is also pointed out that transition benches along the soil/bedrock interfaces at both ends of this section of the roadway will be needed to alleviate the possibility of stress concentration and associated pavement crack development.

From Station $13+00\pm$ to the end of the roadway at Station $17+50\pm$, the pavement subgrade will consist of residual soils. The residual soils are expected to vary from a high strength basal part to low strength upper part. Therefore, it will be prudent to continue using the conservative CBR value of 3 for the roadway pavement design.

Road 03

This 3800± foot long road will be constructed either on newly placed fill or the nearsurface colluvial/residual soils as only minor cuts will be made to reach the proposed roadway subgrade. New compacted fill and thoroughly proof-rolled existing residual/colluvial soils will provide adequate pavement subgrade capable of providing a CBR value of 3 for pavement design.

Road 04

This road will traverse both the undisturbed hillside and the previously graded flat area from Station $0+00\pm$ to Station $10+00\pm$. From Station 0+00 to Station $4+00\pm$, the roadway will be constructed by making a cut that will be as deep as $25\pm$ feet near Station $2+00\pm$. Consequently, the roadway subgrade will transition from residual soils to limestone bedrock back to residual soils. It might be preferred to overexcavate the bedrock by $3\pm$ feet when encountered and backfill with suitable on-site material to provide uniformly compressible subgrade for the pavement.

From Station $4+00\pm$ to Station $9+00\pm$, the roadway alignment will require fill to raise the roadway grade. Beyond Station $9+00\pm$ and extending up to Station $16+00\pm$, the roadway will be constructed by making a cut that will reach up to $50\pm$ feet deep in the vicinity of Station $11+50\pm$. As

a result, the roadway subgrade will be comprised of both residual/colluvial soils and relatively incompressible medium hard to hard limestone and shale rock. The approximate limits of rocks are estimated to be Station $10+25\pm$ and $14+00\pm$, a stretch of about 375 feet. As discussed under Road 02, it will be desirable to use the same pavement thickness everywhere to keep the uniformity of pavement despite much higher CBR value for rock. Construction of transition benches along the soil/rock contact should also be incorporated in the design to avoid stress construction due to abrupt change in the compressibility of subgrade materials. Installation of utilities will require excavation of hard rock along this section of roadway.

From Station $16+00\pm$ to the end of the road, new fill will be placed to raise the roadway grade. The fill is likely to consist of residual soils and extremely weathered rock, which when properly compacted will provide suitable pavement subgrade. A CBR value of 3 can also be used for this material.

Road 05

This is a relatively short road estimated to be about $560\pm$ feet long. The existing and proposed grades are such that only small cuts and fills will be needed to develop the desired roadway grade. Accordingly, the entire roadway pavement can be designed based on a CBR value of 3 that is representative of residual soils/compacted common fill.

Road 06

The first $200\pm$ feet of this $1200\pm$ foot long road will be constructed on a new fill that averages about $20\pm$ feet along the roadway centerline. Beyond Station $2+50\pm$, the vertical alignment of the roadway essentially follows the existing ground surface elevation. As a result, only minor cuts in the range of $0\pm$ to $10\pm$ feet will be needed to reach the desired roadway grade. Considering the site is covered with an average soil thickness of $18\pm$ feet, the cut will be limited to the upper part of the soil zone for most of the roadway stretch. Accordingly, the pavement subgrade will be comprised of residual soils that will provide reasonably good pavement subgrade. Again, a CBR value of 3 should also be applicable for this road to calculate the pavement thickness.

6.0 GEOTECHNICAL DESIGN AND CONSTRUCTION CONSIDERATIONS

The geotechnical considerations at the Phase I area of the project site are controlled by the topography with its considerable relief across the site. To develop the buildable pads for the anticipated commercial and office buildings, deep cuts and high fills will be needed. The primary geotechnical considerations are as follows:

- 1. stability of cut slopes
- 2. stability of embankments
- 3. long-term total and differential settlements of fill embankments
- 4. foundation support systems for the buildings.

Each of these considerations is discussed below.

6.1 Slope Stability Analyses

A total of seven (7) sections, three (3) in the critical cut areas, three (3) at the highest embankment areas and one (1) where fill will be placed on top of cut, were selected for slope stability analyses. The analytical tool selected to conduct the analyses was a computerized slope stability program, *SLIDE2*, which was developed by RocScience. The results of the slope stability analyses are presented in Appendix D of this report. A summary of these analyses is presented below.

Selection of Shear Strength Parameters

The soil/rock parameters needed for the stability analyses consist of unit weight and effective shear strength parameters (cohesion and angle of internal friction) of both the in-place soil and rock material as well as anticipated fill material.

The shear strength parameters of the anticipated embankment and subsurface soils were selected based on the limited laboratory testing, SPT N-values, review of published literature and our experience on the similar materials. It is anticipated that the embankments will be constructed utilizing the soil mixed with some weathered rock that will become available from the excavations across the site. These materials will have a range of shear strength parameters, but for the stability analyses, an average value is selected to represent the entire fill mass. The parameters used in the slope stability are summarized in the following table:

Soil Type	Unit Weight (PCF)	Angle of Internal Friction (°)	Cohesion (PSF)
Existing Fill (CL)	120	26	50
Colluvial (CL)*	120	23	0
Residual (CL)	125	28	100
Coal/Carbonaceous Shale	130	30	100
Decomposed Shale (CL/SC)	130	32	100
Decomposed Sandstone/Limestone (GM/GC/SC)	135	34	100
Bedrock	150	40	3000
New Fill	130	30	150
Rock Toe	115	38	0

^{*}Derived from soils/rock other than claystone

6.2 Stability of Cut Slopes

The cut slopes are located in Areas 1, 3, 5 and 6 (see Sheet No. 1 in Appendix C) with the deepest depicted on Geologic Cross-Sections A-A, F-F, L-L, M-M, O-O, P-P, Q-Q and R-R.

6.2.1 Area 1

The critical cut in Area 1 is depicted on Geologic Cross-Section A-A and extends from elevation $1233\pm$ to elevation $1190\pm$, a depth of $43\pm$ feet. According to the cross-section, the soil zone will extend to a depth of $25\pm$ feet along the cut slope face, and the remaining cut face will be comprised of rock. The upper $7\pm$ feet of the soil zone consist of coal and carbonaceous shale and the remainder of the soil zone comprised of decomposed shale bedrock with very high SPT N-values. Since the soil zone has lower shear strength compared to the underlying bedrock, the potential failure zone is likely to be confined to the soil zone.

The results of the stability analyses indicate that the factor of safety (FS) against slope failure for the cut through the soil zone with 2H:1V slope ratio is 1.78 which is greater than the stateof-the-art required value of 1.5. The results of the stability analyses are included in Appendix D of this report. It may be pointed out that there may be isolated seepage coming from the coal seam. At the top of the cut, slope treatment may be required to collect the seepage and channel it out to avoid slope erosion.

6.2.2 Area 3

The critical cut in Area 3 is depicted on Geologic Cross-Sections F-F and extends from elevation $1227\pm$ to elevation $1182\pm$, a depth of $45\pm$ feet. According to the geologic cross-section, the entire cut slope will be confined to the soil zone. The upper $3\pm$ feet of the soil zone consists of colluvium with a $9\pm$ foot silty clay upper residual soil layer underlying it. The remainder of the soil zone along the cut slope face consists of a granular silty to clayey sand layer, which is essentially the badly decomposed underlying parent bedrock. While the colluvial soil has low shear strength, this layer is so thin that it will have very limited impact on the design of the cut slope. The residual soils have moderate to high shear strength and will allow for the cut to be safely made using a 2H:1V slope ratio. No slope stability analysis was performed on this section; however, based on previous experience with this type of soil, the factor of safety of this cut slope is expected to be greater than 1.5. It should be noted that a coal/carbonaceous shale seam was encountered midway down the slope face and isolated seepage may be encountered from this layer, which may require slope treatment to avoid erosion.

6.2.3 Area 5

The critical cuts in Area 5 are depicted on Geologic Cross-Sections P-P, Q-Q and R-R. The cut at Geologic Cross-Section P-P extends from elevation $1300\pm$ to $1268\pm$, a depth of $33\pm$ feet. This cut is located along the backside of the north cut slope which was a part of the initial 2012 development phase. The soil mantle within this cut slope extends to a depth of $10\pm$ along the face of the cut and consists of very dense residual soils with relatively high shear strength that are essentially a decomposed sandstone bedrock. The remainder of the cut face will be through bedrock consisting of silty shale and limestone rock units, all with high shear strength that are capable of providing a safe cut using 2H:1V slope ratio. Therefore, no slope stability analysis was performed on this geologic cross-section. It should be noted that isolated seepage may be encountered from the coal/carbonaceous shale and limestone layers towards the bottom of the slope, which may require slope treatment to avoid erosion.

The other critical cut represented by Geologic Cross-Section Q-Q extends from elevation $1315\pm$ to $1272\pm$ feet, a depth of $43\pm$ feet. The soil cover at this cut is approximately $10\pm$ to $15\pm$ feet thick and is comprised of granular clayey sand. The upper residual soil layer has a loose relative density due to the proximity to the surface where weathering is more intensive while the lower residual soil layer is rich in more decomposed sandstone rock fragments. Both layers have moderately high shear strength. The reminder of the cut will be constructed through bedrock, mainly sandstone, with some carbonaceous shale/coal and limestone near the toe. Again, considering that majority of the cut slope will be confined to the high strength bedrock and the cut slope ratio will be 2H:1V, no slope stability analysis was performed at this location. Once again, isolated seepage may be encountered at the slope surface in the coal/carbonaceous shale and limestone layers at the toe but nothing serious enough to affect the long-term stability of the cut slope.

The critical cut at Geologic Cross-Section R-R extends from elevation $1257\pm$ to $1230\pm$ feet, a depth of $27\pm$ feet. Due to extensive weathering, the residual soil zone is about 20 feet thick at this location. With a 2H:1V slope ratio, the entire cut slope will be confined to the soil zone. The upper $3\pm$ feet of the soil zone consists of colluvial silty clay material. Although this material typically has very low shear strength, considering its proximity to the top where the cut will be rounded to a flatter slope, it is unlikely to have a negative impact on the overall stability of the cut. The residual soil consists of an upper layer of fine-grained silty clay with stiff consistency, followed by a $5\pm$ foot thick weathered coal/carbonaceous shale seam and a $7\pm$ foot layer of a decomposed shale with medium dense to very dense relative density. The residual soils have moderate to high overall shear strength as indicated by their composition and SPT N-values.

The results of the stability analyses, which are documented in Appendix D of this report, indicate that the factor of safety (FS) against slope failure for the 2H:1V cut through the soil zone is 1.51, which is greater than the industry-accepted value of 1.5. It may be pointed out that there may be isolated seepage coming from the coal seam along the slope face after the initial cut and during times of heavy precipitation and may require treatment.

6.2.4 Area 6

The critical cut in Area 6 is represented by Geologic Cross-Section M-M that extends from elevation $1190\pm$ to $1162\pm$ feet, a depth of $28\pm$ feet. The soil profile along the face of the cut

consists of $3\pm$ feet of silty clay colluvial soil at the top of the cut, followed by $15\pm$ feet of residual silty clay beneath that, and finally $15\pm$ feet of granular clayey sand at the bottom above the bedrock. The colluvial soils have a medium stiff consistency with low shear strength; however, due to their close proximity to the top of the slope where the cut will be rounded off to a flatter slope, they will have very little impact on the long-term stability of the cut. The upper silty clay residual soils have a stiff to hard consistency and have moderately high shear strength while the lower residual soils are essentially a decomposed shale bedrock with a very dense relative density and high shear strength.

The results of the stability analyses included in Appendix D of this report indicate that the factor of safety (FS) against slope failure for the cut with 2H:1V slope ratio through the soil zone is 1577, which is greater than the state-of-the-art requirement of 1.5.

6.3 Stability of Fill Embankment Over Cut Slope

The critical areas where fill embankments will be constructed over cut slopes are depicted on Geologic Cross-Sections L-L and O-O, which overlap areas 3 and 5 and 5 and 6, respectively. Geologic Cross-Section L-L was considered more critical of the two (2) areas and was selected for slope stability analyses. This section represents the subsurface conditions where new fill will be placed on top of the proposed cut slope. The cut portion of Geologic Cross-Section L-L extends from elevation 1227 \pm to 1187 \pm feet, a depth of 40 \pm feet. Additionally, 30 \pm feet of new fill will be placed directly overtop the cut slope at a 2H:1V slope ratio up to elevation 1257 \pm feet to create a buildable pad at the top of slope. This will result in an overall slope face of about 70 \pm feet. The soil profile along the cut/fill slope consists of 3 \pm to 9 \pm feet of silty clay colluvial soil, followed by 9 \pm feet of silty clay residual soil which also contains two (2) distinct coal seams, and finally 2 \pm to 7 \pm feet of granular silty clay to clayey gravel residual soil, which is a decomposed claystone/limestone rock mix.

The colluvial soils have low shear strength while the residual soils have moderate to high shear strength. Slope stability analyses performed at this location indicate that a rock toe bench (10' deep x 15' wide) will need to be constructed at the cut/fill transition line and extend back to competent bedrock in order for this slope to meet the required 1.5 FS against slope failure. The results of the slope stability analyses are included in Appendix D of this report.

The cut portion of Geologic Cross-Section O-O extends from elevation $1225\pm$ to $1180\pm$ feet, a depth of $45\pm$ feet. Additionally, $20\pm$ feet of new fill will be placed directly overtop the cut slope at a 2H:1V slope ratio up to elevation $1245\pm$ feet to create a buildable pad at the top of slope resulting in an overall slope of $65\pm$ feet. The soil profile along the cut/fill slope consists of $3\pm$ to $6\pm$ feet of silty clay colluvial soil, followed by 3 to $6\pm$ feet of silty clay residual soil, and finally $5\pm$ to $15\pm$ feet of granular silty to clayey sand and gravel residual soil. The colluvial soils have low shear strength while the residual soils have moderate to high shear strength.

It is obvious from the analyses conducted at Geologic Cross-Section L-L that a similar treatment will be needed at the cut/fill slope represented by Geologic Cross-Section O-O. It is estimated a rock to bench will be required at the cut/fill transition zone that would extend back to the more competent highly weathered rock zone (approximately $25\pm$ feet wide by $8\pm$ feet deep) to create a stable slope of 2H:1V cut/fill slope ratio.

6.4 Stability of Embankments

High embankments are proposed within Areas 1, 3, 4, and 5, primarily located along the south and west sides of the site. All embankments were designed with a 2H:1V slope geometry as indicated in the drawings prepared by Sheffler and Company, Inc.. Detailed slope stability analyses were conducted for each area and the results of the analyses have been documented in Appendix D of this report.

6.4.1 Area 1

One moderately high embankment is proposed within this area and the subsurface conditions at the greatest height of the embankment are depicted on Geologic Cross-Section B-B. The proposed fill embankment would extend from elevation $1108\pm$ to elevation $1155\pm$ feet, a height of $47\pm$ feet. The subgrade soils on which the embankment will be constructed consist of both residual and colluvial soils. The upper part of the residual soils typically has low shear strength due to weathering over time and thus the upper few feet (typically $2\pm$ to $3\pm$ feet) of these soils would be removed by constructing bonding benches to provide a firm base for the embankment. Due to their considerable height, the embankments will have to incorporate rock toe benches in order to create high strength material and to provide a porous drainage medium at the toe to achieve the desired long-term stability. The bonding benches must be deep enough to key-in the new fill into competent material.

It is also recognized that underdrains in properly located bonding benches and bleeder trenches in the rock toe bench will be installed to collect and channel out ground water, depress the phreatic surface within the embankment and minimize saturation of fill. Therefore, these subgrade improvements are incorporated in the stability model.

The results of the slope stability analyses are presented in Appendix D and are summarized below.

Geologic	Rock Toe Di	mensions (ft.)	Factor
Cross-Section	Depth	Width	of Safety
B-B	10	20	1.59

The results indicate that the proposed 2H:1V slope can safely be constructed of common fill with effective angle of internal friction, $\phi = 30$ degrees and a nominal cohesion c = 150 PSF. The calculated factor of safety 1.59 against a slope failure is greater than the acceptable value of 1.5 provided proper subgrade modification and incorporation of rock toe bench and bonding benches are included in the design.

6.4.2 Area 3

The subsurface conditions at the main embankment along the northwest corner of the site are depicted by Geologic Cross-Sections G-G, H-H, and J-J. The embankment height ranges from $40\pm$ feet at Geologic Cross-Section J-J to $60\pm$ at Geologic Cross-Section H-H. The subgrade soils on which this embankment will be constructed consist primarily of colluvial and residual soils. Similar to Area 1, the upper part of the residual soils along with the colluvial soils typically have low shear strength due to weathering over time and thus the upper few feet (typically $2\pm$ to $3\pm$ feet) of these soils would be removed by constructing bonding benches to provide a firm base for the embankment. Additionally, the low strength colluvial soils located at the toe of the proposed embankment will be removed during the construction of the rock toe. Therefore, these soils will not have any impact on the stability of the embankment.

The subsurface conditions at the secondary embankment located more further north in the previously developed area are illustrated on Geologic Cross-Section K-K. This embankment will rise from elevation $1170\pm$ to $1235\pm$ feet, a height of $35\pm$ feet. The subgrade soils on which the embankment will be constructed consist of existing fill and the underlying residual soils. The low strength fill soils, located at the toe of the embankment, will be removed during construction of the rock toe while the moderately high strength residual soils are fairly competent into which bonding benches will be constructed. For slope stability analyses, Geologic Cross-Section J-J was selected as a slope stability model.

The results of the slope stability analyses are presented in Appendix D and are summarized in the table below that also lists the depth and width of rock toe benches at the four (4) geologic cross-sections.

Geologic	Rock Toe Di	mensions (ft.)	Factor
Cross-Section	Depth	Width	of Safety
G-G	15	10	
H-H	10	10	
J-J	10	15	1.62
K-K	10	15	

Based on the above analyses, it is determined that the embankments at Area 3 can safely be constructed at a slope ratio of 2H:1V by providing adequately-sized rock toe benches extending into bedrock that will be available at a readily accessible depth of 10 to $15\pm$ feet and bonding benches extending below the low strength fill and colluvial soil zones.

6.4.3 Area 4

The subsurface conditions at the highest embankment in Area 4 are graphically depicted by Geologic Cross-Section I-I. This embankment will rise from toe elevation $1185\pm$ to top elevation $1215\pm$ feet, a height of $30\pm$ feet. The subgrade soils on which this embankment will be constructed consists primarily of colluvial and residual soils. As previously stated, the colluvial soils typically have low shear strength thus the upper few feet (typically $2\pm$ to $3\pm$ feet) of these soils would be removed by constructing bonding benches to provide a firm base for the embankment. Additionally, the colluvial soils located at the toe of the proposed embankment will be removed during the construction of the rock toe bench. The depth to bedrock at this location is approximately 20 feet, thus the rock toe will bear in competent residual soils comprised of highly weathered rock.

The results of the slope stability analyses along Geologic Cross-Section I-I are presented in Appendix D and are summarized below.

Geologic	Rock Toe Di	mensions (ft.)	Factor
Cross-Section	Depth	Width	of Safety
I-I	10	15	1.68

The results indicate that the proposed 2H:1V slope to be constructed of common fill from a mixture of onsite soil and weathered rock should provide a minimum required factor of safety value greater than 1.5 with proper subgrade modification including incorporation of a rock toe bench, bonding benches and underdrains.

6.4.4 Area 5

The subsurface conditions at the main embankment in Area 5 are plotted on Geologic Cross-Section S-S. The elevation near the toe of the embankment is $1203\pm$ feet. The top of embankment will be at elevation $1238\pm$ feet, a height of $35\pm$ feet. The subgrade soils on which this embankment will be constructed consist primarily of man-made fill and residual soils. As previously stated, the fill and upper residual soils typically have low shear strength, thus the upper few feet (typically $2\pm$ to $3\pm$ feet) of these soils would be removed by constructing bonding benches to provide a firm base for the embankment. The low strength fill and residual soils at the toe will be removed during construction of the rock toe bench, which will bear in competent limestone bedrock at this location.

It is obvious from the analyses conducted at the other fill embankments that a similar treatment will be needed at the slope represented by Geologic Cross-Section S-S, thus no slope stability analysis was performed at this location. It is estimated a rock toe bench will be required at the toe of slope that would extend back to the more competent highly weathered rock zone (approximately $15\pm$ feet wide by $15\pm$ feet deep) to create a stable slope of 2H:1V slope ratio.

6.4.5 Area 6

The subsurface conditions at the main embankment in Area 6 are plotted on Geologic Cross-Section N-N. The elevation near the toe of the embankment is $1110\pm$ feet. The top of embankment will be at elevation $1150\pm$ feet, a height of $40\pm$ feet. The subgrade soils on which this embankment will be constructed consist entirely of residual soils with the upper few feet (typically $2\pm$ to $3\pm$ feet) of these soils being removed by constructing bonding benches to provide a firm base for the embankment. The rock toe bench will bear in competent decomposed sandstone residual soils or sandstone bedrock at this location.

It is obvious from the analyses conducted at the other fill embankments that a similar treatment will be needed at the slope represented by Geologic Cross-Section N-N, thus no slope stability analysis was performed. It is estimated a rock toe bench will be required at the toe of slope that would extend back to the more competent highly weathered rock zone (approximately $15\pm$ feet wide by $10\pm$ feet deep) to create a stable slope of 2H:1V slope ratio.

6.5 Total and Differential Settlement of Embankments

In parts of the site where the large fill embankments will be constructed, a considerable amount of post-construction settlement can be expected, which will be contributed by the following three (3) components:

- a. consolidation of existing soil under the weight of the fill;
- b. long-term post construction consolidation of fill under self mass; and
- c. consolidation of the soils due to the building loads.

Typically, the settlement resulting from the consolidation of 10 to $20\pm$ feet of existing soil zone is mostly completed by the time the fill is topped provided, the fill is placed over a period of 3 to $4\pm$ months. The settlement resulting from the post-construction consolidation of fill under self mass may take 3 to $6\pm$ months depending upon the thickness of the fill, its composition and the rate at which the embankment is constructed. For embankments constructed using common fill (on-site soil) the post-construction consolidation is generally in the range of 0.5 percent of the fill thickness. For granular fill consisting of ripped rock, the settlement decreases to about 0.25 percent of the fill thickness. Additionally, the rate of settlement in rock fill also increases compared to that of clayey soil fill. The third component of settlement is caused by the building loads. Most buildings are designed to tolerate 1 inch and $\frac{3}{4}$ inch total and differential settlements. The properly engineered fill is capable of providing 2 to 3 KSF net allowable bearing material depending upon the type of fill material and limit the associated settlements to the designed criteria as long as the long-term settlement due to the post-construction consolidation of fill has been completed. Therefore, it is essential that a "rest/waiting" period be allowed for the embankments to mostly complete their post-construction consolidation prior to the construction of the structures. There are some avenues available to accelerate the rate of consolidation such use of surcharge or inclusion of free draining blankets sandwiched between the common fill at suitable intervals (typically 10 to $15\pm$ feet apart). However, any one of these options utilized has the associated costs. The decision to utilize these options is influenced by the project economics and construction schedule. It will be highly desirable to instrument and monitor the settlement behavior of the high embankments to facilitate the construction schedule.

6.6 Foundation Support Systems

At this time, it is assumed that the proposed buildings at the site will be lightly loaded structures such as 2 to 3-story wood-frame townhouses and single-family dwellings. Although no site-specific subsurface information had been collected at individual building locations, based on the limited available data the following general guidelines can be used for the preliminary design purposes followed by the supplementary investigations at each structure. The supplementary investigation should follow the geotechnical requirements of the future tenants/owners.

Lightly loaded structures placed exclusively in rock could be supported by shallow foundations bearing in rock using 4 to 15 TSF allowable bearing capacity depending on the rock lithology. Lightly to moderately loaded buildings located exclusively in the new engineered fill can be supported by shallow foundations bearing in fill. The available bearing capacity will range between 2 and 3 KSF for finer grained and granular material, respectively. The building located partially in soil and partially in rock may require either undercutting of rock and backfilling with compacted fill or lowering of footings in the soil zone to maintain similar compressible subgrade. In some cases, undercutting of soil and backfilling with lean concrete may become a better option.

7.0 RECOMMENDATIONS

Based on the discussion and evaluation of subsurface conditions presented in the previous sections GeoMechanics, Inc. presents the following recommendations for the Meadows Landing site development in South Strabane Township, Washington County, Pennsylvania.

7.1 Fill Embankments

7.1.1 Slope Ratio

• Design all fill embankment consisting of properly compacted common fill using a slope ratio not steeper than 2H:1V.

7.1.2 Embankment Subgrade Preparation

- Grub the area, remove all topsoil and any soft zones that may exist in the natural soil or previously placed fill at the subgrade level. The depth of unsuitable soil removal shall be adjusted based on the results of proof-roll-ing.
- Construct the rock toe benches and the upslope bonding benches of adequate dimensions to key the new fill into competent rock or residual soils.
- Locations of the rock toe bench and bonding benches are shown on the attached Site Plan, Sheet No. 1 included in Appendix E of this report. Typical subgrade treatment cross-sections, showing the approximate anticipated extent of the rock toe bench and bonding benches, are also presented in Appendix E, Sheet Nos. 2 through 13.
- The sizing of the rock toe benches is based on results of slope stability analyses and also the following general guidelines:

Height of	Toe	Dimensions
Embankment (ft.)	Width (ft.)	Depth (ft.)
50 to 90	20-40	10-20
35 to 50	15-20	10-15
20 to 35	10	10
10 to 20	10	6
0 to 10	10	3

- Extend the rock toe bench a minimum of 1 foot into competent bedrock, if bedrock is found to be shallower than the specified depth of rock toe bench. Build the rock toe bench on top of bedrock to the original design depth, or to a depth determined by the Engineer.
- Increase the depth of rock toe bench if competent subgrade is not available at the designed depth of rock toe. If any soft, wet clayey zone or decomposed coal seam is encountered at the bottom of rock toe during the construction, consider extending the rock toe below the soft clayey zone, as determined by the Engineer.
- Provide parallel bonding benches extending into competent material where fill is to be placed against the sloping hillside to key the new fill into in-situ competent residual soils or bedrock, as shown on the typical plan and embankment cross-sections. The dimensions of these benches will vary and may have to be adjusted in the field depending on the topography and slope of the hillside. In general, the depth and width of bonding benches will be 4 to 8± feet and 20 to 40± feet, respectively, depending on the slope of existing ground surface and thickness of proposed fill. All benches should start at a depth of at least 5 feet into competent residual soils below a depth of 3 feet from existing ground surface. See the Typical Embankment Cross-Sections on Sheet Nos. 2 through 14 in Appendix E.
- Provide a base drain at the bottom of gullies to collect seepage water from the gulley walls and channel it out through the toe bench drain for typical detail see Detail 1 included in Appendix F.

- Provide an underdrain in every 3rd bench to collect ground water that may be seeping out of the hillside (see Detail 2 in Appendix F). Provide sufficient gradient to allow the collected ground water to channel out on either side of the embankment or to the base drain located in the gulley bottom.
- Provide bleeder trenches every 300± feet laterally to provide an outlet for the ground water collected in the toe bench. For typical detail see Detail 2 in Appendix F of this report.

7.1.3 General Fill Placement

Common Fill

- Make excavations for installing bonding benches and rock toes within the competent residual soils and/or bedrock. Prior to placing any new fill, thoroughly proof-roll and compact the exposed subgrade using heavy earthmoving equipment (such as a 20-ton loaded triaxial dump truck, or a smooth drum vibratory roller which imparts a dynamic force of at least 300 pounds per lineal inch of drum length) until no perceptible movement is observed or to the satisfaction of the engineer. If any wet, soft or yielding soils are detected by proof-rolling, and which cannot be stabilized with additional compaction, they should be undercut to stable material. The expected depth of additional undercutting is typically 2 to 3± feet below the stripped subgrade, however, it should be adjusted based on actual subgrade conditions. Backfilling must be performed with dry and granular material under proper compaction control. Proof-rolling should not be performed when the subgrade is wet or frozen and when bedrock is present.
- Samples of the common fill material should be collected and tested prior to the site work to determine the maximum dry density, optimum moisture content, gradation and plasticity characteristics. These tests are necessary to control the quality of the fill material and determine the controlling

parameters for field compaction. The on-site excavated material could be used as new fill provided it is properly blended and moisture conditioned. However, excessively clayey material (claystone) or other deleterious materials must not be used as fill.

- Periodically test the floor slab or pavement subgrade material (both the inplace material and/or new fill) for the presence of expansive pyritic material, as determined by the inspectors during the pad preparation. If any expansive material is detected or suspected within a 5 feet depth of the bottom of floor slab or bottom of the foundation, such pyritic materials must be removed from the affected areas and replaced with suitable inert materials.
- Remove all large cobbles and boulders greater than 6 inches in maximum dimension, which may interfere with the rolling and compaction of the embankment material.
- Place and compact the common fill in maximum 9-inch thick loose layers; compact each layer to 95 percent of the maximum dry density at ±2 percent of the optimum moisture content as determined by the Modified Proctor Compaction test (ASTM: D 1557). In confined areas, use a smaller compactor and reduce the lift thickness to 6 inches. Care should be exercised to ensure that the fill is free from excessively clayey or any organic-rich materials. Particles larger than 3 inches in maximum dimension should not be included in the upper 5 feet of engineered fill placed within the building area. Larger rock pieces, mixed with other soils and rock debris, can be placed within the deeper part of the fill outside of the building pads.
- Maintain the embankment in a satisfactory manner until final completion of the project. Replace any or all sections which become damaged or displaced due to any construction activities or natural causes, such as rain or snow storms, etc.

Rock Fill

- The rock toe bench must be constructed of hard, durable sandstone and/or limestone rock. Sufficient amount of hard rock is expected to be available from the on-site cut areas and, therefore, it should not be necessary to import rock materials. The maximum size of rock material shall not exceed 12 inches and should be free of fines (-#200 sieve maximum 5%). Other degradable material such as soft shale/claystone, fissile silty clayey or sandy shale or siltstone must not be used as rock fill material, in place of hard and durable sandstone and limestone. The lift thickness should not exceed 18 inches. Alternatively, sound and durable crushed concrete or any other free draining material such as hard heavier slag (minimum unit weight of 125 PCF can be used in toe bench).
- Compact the rock used in the toe bench with a smooth steel drum vibratorytype roller using a minimum static weight of 10 tons, capable of delivering a dynamic force of at least 300 pounds per lineal inch of drum length. Perform rolling until a no-movement condition is achieved, but apply a minimum of four (4) overlapping passes of the roller, and as directed by the Engineer.

7.2 Cut Slope

Slope Ratio

- Design all cuts confined to the soil using a maximum of 2H:1V slope ratio with rounding at the top.
- Design all cuts extending through the rock no steeper than 1.5H:1V.

Rock Excavation

• Use mechanical equipment to perform excavations into bedrock. While most of the rock is rippable, some sandstone and limestone intervals are

massive and hard. Use pre-splitting and hoe ramming to excavate these rock units. Alternatively use controlled blasting to excavate these rock units.

Erosion Control

- Provide diversion ditches at the top of cut, approximately five feet beyond the cut face to collect the surface runoff from the upslope area and channel it out to minimize erosion of the cut face.
- Provide a collector trench near the toe of the cut to control the surface runoff and tie it to the nearest storm water management inlet.
- Provide an impermeable clay liner in the diversion ditch. This will prevent seepage of water into the subsurface soils and avoid slope instability.

7.3 Pavement Design

No daily ESAL's values are available for this project. However, based on GeoMechanics, Inc.'s experience with similar type of projects the following asphalt pavement thicknesses for the pavement of the proposed roadway, overlying a Mirafi 600X fabric, are recommended. A CBR of 3 was assumed for the newly placed fill and subgrade materials based on the two (2) laboratory CBR tests. The pavement thicknesses presented below are based on an assumed ESAL value. When anticipated traffic data becomes available for the development, the pavement design should be reevaluated to verify the recommended design is adequate for the intensity of the traffic loads.

Course (PENNDOT 408 Specification Section)	Flexible Pavement
Wearing Course ID-2, 420	1.5"
Binder Course ID-2, 421	3.5"
Base Course, AASHTO #57	9.0"
Total Thickness	14.0"

- Use a compacted coarse aggregate, equivalent to AASHTO No. 57. Alternatively, use AASHTO No. 1 or No. 3 crushed stone. The open graded stone should be "surface choked" with minus fractional material such as PENNDOT No. 2A. The surface material should be compacted with at least two (2) passes of a smooth-drum steel wheeled roller with a minimum weight of 10 tons.
- Proof-roll thoroughly the soil/fill surface before the base course is placed. If a soft and yielding spot is encountered, excavate the soft material and backfill with properly compacted dry material.
- Tie the base course into side drainage ditches as well as storm water inlets to provide positive drainage.
- When bedrock is encountered at pavement subgrade elevation, construct a transition bench as shown in Detail 4 of Appendix F. Backfill the transition bench using properly compacted PENNDOT 2A coarse aggregate.

7.4 Preliminary Type and Depth of Foundations

According to the current grading plan, the foundation materials available for support of a shallow foundation vary from engineered fill to residual soils to bedrock. All foundations for a respective building should bear in similar foundation materials, in regards to compressibility.

- In the event dissimilar materials are encountered at the bearing elevation for shallow foundations, any existing bedrock will need to be undercut and back-filled with inert material under compaction control.
- Use a net allowable soil pressure of 2.0 KSF and a maximum toe pressure of 2.8 KSF to size footings, bearing both in residual soils and engineered fill.

- Use a minimum width of 18 inches for strip footings and 36 inches for spread footings regardless of bearing pressure to properly distribute the load and minimize the potential for local or 'punching' shear.
- Place footings, exposed to outside weather, at least 42 inches below the outside finished grade to protect foundations from frost heaving. The interior footings, however, could be placed at shallower depths but in similar competent subgrade.

7.5 Testing and Monitoring

- Have a geotechnical engineer or experienced soils technician from GMI at the site to inspect and ensure the placement and compaction of the fill, the excavation procedures; installation of rock toe and bonding benches and underdrains in compliance with the job specification. The duties also include inspection of building foundations, floor slabs, pavement and the reinforced walls to ensure that the bearing materials are compatible with the design criteria set forth in this report and comply with the applicable specifications.
- Schedule a waiting period of sufficient length (typically 4 to 6 months) to allow settlement of the fill embankments prior to placing the foundation and the pavement. Implement a comprehensive settlement monitoring program to determine the time rate of settlement. Install a sufficient number of settlement monitoring devices (see Detail 3 in Appendix F) where high fills will be placed to monitor the settlement and adjust the construction schedule accordingly. The number and location of settlement monitoring devices should be finalized, when the grading plans are finalized and construction is nearing a start.
- Perform surveys on the settlement monitoring devices to estimate both the total settlement and the rate of settlement of the compacted fill. Record both

the vertical and horizontal movements. The data on the settlement monitoring devices should be made available to GeoMechanics, Inc. immediately so that the data can be plotted to assess the time-settlement behavior of the fill embankments and to decide when the settlement has stabilized and construction can be started.

- If scheduling constraints require the use of shorter time for consolidation of fill, consider using a minimum $20\pm$ feet high embankment surcharge load under the building area. The height and duration of the embankment surcharge will depend on the desired consolidation time. The use of a surcharge may shorten the time for consolidation of fill, but it cannot be eliminated completely. In addition, this will increase the cost significantly.
- Install slope inclinometers at high embankments to monitor the deformation behavior of the embankments, to detect the presence of any slippage (excessive shear movement) within the embankments and, if needed, develop corrective methods. The number and location of inclinometers should be finalized, when the fill placement is nearing completion.

7.6 Limitations

- The subsurface evaluation of the site is based on a limited number of borings spread across a large area. Considerable extrapolation among borings was needed to prepare the generalized geologic cross-sections. The recommendations presented in this report are general in nature and should be modified, if necessary, based on the actual field data.
- During the site preparation and construction, if subsurface conditions encountered differ significantly from those reported herein, this office should be notified immediately so that the analyses and recommendations can be reviewed and/or revised accordingly.

- This report has been prepared in accordance with the generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. We assume no responsibility for interpretations made by others based upon work or evaluation made by GeoMechanics, Inc.
- In preparing this report, the only warranty or guarantee made by GeoMechanics, Inc. in connection with services performed for this project is that such services were performed with the care and skill ordinarily exercised by reputable members of the profession practicing under similar conditions at the same time and the same or similar locality. No other warranty, expressed or implied, is made or intended by rendition of these consulting services or by furnishing oral or written reports of the findings made.

TABLES

TABLE NO. 1A:SUMMARY OF PERTINENT BORING INFORMATION (SOIL AND GROUNDWATER)(Page 1 of 2)

													Soil	1									Ground	dwater	
Boring	Exsisting	Total	Geologic	Proposed		Fi	11			Colluvial	/ Alluvial			Upper F	Residual			Lower	Residual		Total	0-H	lour	24-ł	Hours
No.	Elevation (ft.)	Depth (ft.)	Cross- Section	Grade (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Soil Thick- ness (ft.)	Depth (ft.)	Elev. (ft.)	Depth (ft.)	Elev. (ft.)
2006 B	ORINGS																								
B-3	1315.0	21.7											5.0	cl	12	1310.0	16.7	SC	60	1293.3	21.7	D	ry		
B-4	1220.0	15.6											11.5	sc	18	1208.5	4.1	SC	50 +	1204.4	15.6	D	ry		
B-5	1235.0	40.0											4.0	cl	21	1231.0	9.2	sc	50 +	1321.8	13.2				
B-7	1255.0	60.0											10.0	cl	16	1245.0	15.0	sc	52	1230.0	25.0	25.0	1230.0		
B-8	1230.0	17.8											11.5	cl	18	1218.5	6.8	sc	50 +	1212.2	18.3	D	ry		
B-9	1215.0	20.0											9.5	cl	23	1205.5	10.5	SC	34	1195.0	20.0	D	ry		
2012 B	ORINGS								u.				1		L		U			I		11			
GB-5	1308.0	120.0	P-P	1200									8.0	CL	21	1300.0	7.1	cl	50 +	1292.9	15.1	88.2	1219.8		
GB-18	1174.6	38.0							9.0	CL	11	1165.6	6.0	gc	31	1159.6	15.0	sc,gm	50	1144.6	30.0	4.4	1170.2	13.2	1161.4
GB-19	1132.5	23.0	C-C	1212					3.0	cl	2	1129.5	3.0	cl	33	1126.5	9.4	sc coal	33 -50+	1117.1	15.4	2.8	1129.7	2.7	1129.8
GB-20	1124.9	23.0	D-D	1220					2.0	cl	8	1122.9	5.0	cl	14	1117.9	8.4	SC	50 +	1109.5	15.4	3.6	1121.3	6.9	1118.0
GB-21	1141.2	22.5	E-E										9.5	cl, sm (carb)	24	1131.7	5.0	sm	63 -50+	1126.7	14.5	4.8	1136.4	9.2	1132.0
GB-22	1154.3	35.0	E-E	1226					15.0	CL	11	1139.3					5.0	sm	78 -50+	1134.3	20.0	4.9	1149.4		
GB-23	1173.2	40.0	C-C	1212					9.5	CL	10	1163.7					6.2	SC	45	1157.5	15.7	5.7	1167.5	Cave	ed 16.3'
GB-24	1148.8	43.0	D-D	1220					12.0	CL	9	1136.8					6.0	sm	12	1130.8	18.0	19.1	1129.7		
GB-25	1170.6	32.5		1226									10.0	cl	12	1160.6	15.1	GC	46	1145.5	25.1	6.2	1164.4	9.2	1161.4
P-3	1114.6	15.4	N-N	1108									8.0	sc	14	1106.6	7.4	gm	50 +	1099.2	15.4	D	ry		
P-4	1112.6	15.1		1108									10.0	cl	14	1102.6	5.1	gm	50 +	1097.5	15.1	D	ry		
P-7	1115.8	21.0											12.0	cl	17	1103.8	3.4	SC	50 +	1100.4	15.4	2.7	1113.1	5.9	1109.9
P-8	1118.2	21.0											12.0	cl	17	1106.2	3.4	SC	50 +	1102.8	15.4	2.8	1115.4	5.5	1112.7

TABLE NO. 1A:SUMMARY OF PERTINENT BORING INFORMATION (SOIL AND GROUNDWATER)(Page 2 of 2)

													Soi	I										Ground	dwater	
Boring	Exsisting	Total	Geologic	Proposed		Fi	ill			Colluvial	/ Alluvial			Upper R	esidual			Lower	Residu	ual		Total	0-1	Hour	24-ł	Hours
No.	Elevation (ft.)	Depth (ft.)	Cross- Section	Grade (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N _{av}	Base Elev. (ft.)	Thick- ness (ft.)	USCS Class- ification	N	l _{av}	Base Elev. (ft.)	Soil Thick- ness (ft.)	Depth (ft.)	Elev. (ft.)	Depth (ft.)	Elev. (ft.)
2021 B	ORINGS		1																							
TB-1	1234.4	41.5	A-A	1190								1234.4	10.0	SC	26	1224.4	21.0	sc,gc		50+	1203.4	31.0	22.7	1211.7	27.3	1207.1
TB-2	1233.0	19.0	A-A	1190									7.5	sc, CL	44	1225.5	11.5	SC		50+	1214.0	19.0	D	RY	D	RY
TB-3	1107.6	17.0	B-B	1160									13.0	CL	13	1094.6	4.0	gm		50+	1090.6	17.0	D	RY	D	RY
TB-4	1256.1	32.5	R-R	1230					3.0	cl	5	1253.1	12.0	cl, sm	26	1241.1	6.5	gc	30	-50+	1234.6	21.5	6.8	1249.3	7.2	1248.9
TB-5	1211.6	30.7	F-F	1182					3.0	cl	16	1208.6	6.5	CL	20	1202.1	21.2	sm, sc	13	-50+	1180.9	30.7	D	RY	31.4	1180.2
TB-6	1203.0	12.6	S-S	1238	3.0	cl	7	1200.0				1200.0	6.5	CL	17	1193.5	3.1	gc		50+	1190.4	12.6	D	RY	D	RY
TB-7	1112.3	10.0	H-H	1170									3.5	cl	19	1108.8	6.5	sm	17	-50+	1102.3	10.0	D	RY	D	RY
TB-8	1116.7	15.1	G-G	1170									9.0	CL	12	1107.7	6.1	gc	13	-50+	1101.6	15.1	D	RY	D	RY
TB-9	1185.1	19.4	I-I	1217					9.0	CL	17	1176.1	3.0	SC	16	1173.1	7.4	sc, gc	45	-50+	1165.7	19.4	D	RY	10.2	1174.9
TB-10	1144.4	13.5	J-J	1185					7.5	CL	12	1136.9	4.5	SC	14	1132.4	1.5	gc		50+	1130.9	13.5	8.2	1136.2	7.6	1136.8
TB-11	1306.1	41.5	Q-Q	1272									4.0	sc	12	1302.1	5.6	gc		50+	1296.5	9.6	32.8	1273.3	CAVE	ED DRY
TB-12	1170.4	15.6	K-K	1205	3.0	cl	12	1167.4					6.0	cl, sc	25	1161.4	6.6	sc	56	-50+	1154.8	15.6	D	RY	13.0	1157.4
TB-13	1230.2	17.0	L-L	1256					3.0	cl	6	1227.2	12.0	cl, sc, gc	15	1215.2	2.0	gc	56		1213.2	17.0	D	RY	7.3	1222.9
TB-14	1213.8	25.2	L-L	1188					9.0	CL	10	1204.8	3.0	cl	10	1201.8	13.2	gc, cl	49	-50+	1188.6	25.2	D	RY	D	RY
TB-15	1190.0	30.2	M-M	1162					3.0	cl	5	1187.0	15.0	CL	31	1172.0	12.2	SC		50+	1159.8	30.2	D	RY	26.1	1163.9
TB-16	1226.9	11.0	0-0	1240					3.0	cl	7	1223.9	3.0	cl	10	1220.9	5.0	gc	16	-50+	1215.9	11.0	D	RY	D	RY
TB-17	1204.7	25.5	0-0	1180					6.0	CL	8	1198.7	6.0	cl	16	1192.7	13.5	sc, gm	62	-50+	1179.2	25.5	D	RY	D	RY
		Averag	es		3.0		10	1183.7	6.5		10	1182.9	7.9		19	1181.9	8.5		3	35	1173.3	18.6	15.0	1169.8	12.2	1161.1
Total I	Drilling =	1001.9	feet																							

Z:\2021 Jobs\21016 - Meadows Landing\[21016 - Report Tables.xlsx]Table 1B

Meadows Landing Residential Development South Strabane Twp., Washington Co., PA

TABLE NO. 1B: SUMMARY OF PERTINENT BORING INFORMATION (BEDROCK)

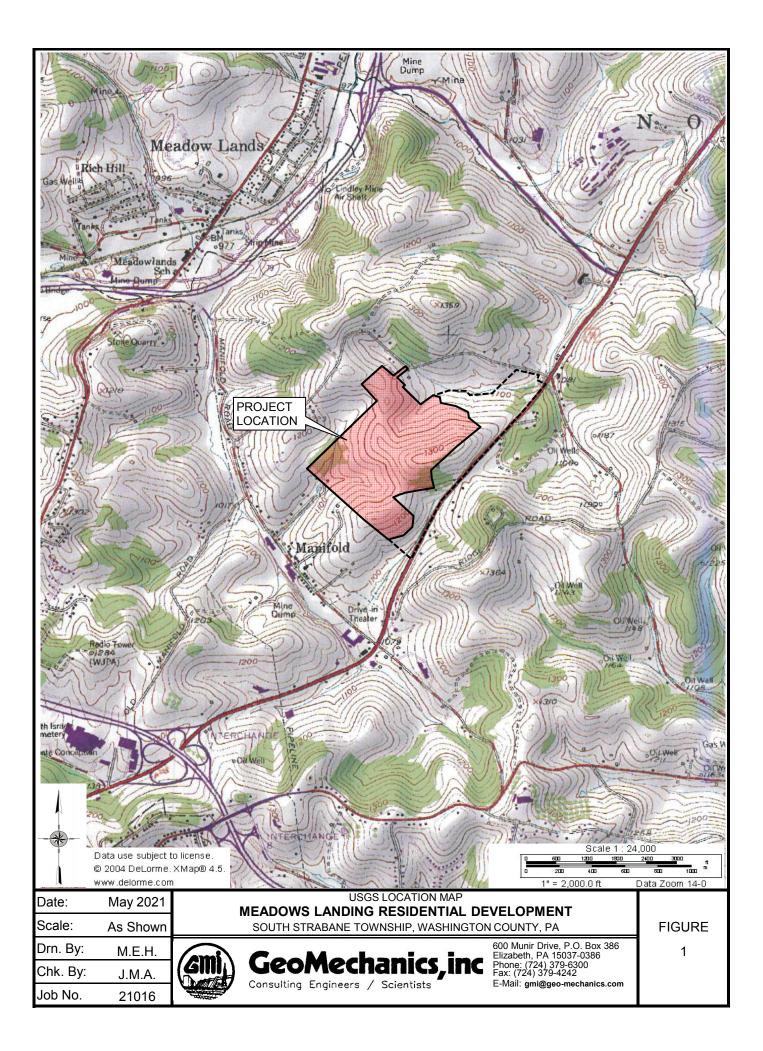
																									Bedrock																			
Boring	Exsisting	Total	Geologic	Proposed	Est.		Layer 1	1					Layer							yer 3					La	yer 4					Layer 5					Laye						Layer 7		
No.	Exsisting Elevation (ft.)	Depth (ft.)	Geologic Cross- Section	Proposed Grade (ft.)	Top of Rock	Thick-	Core Recovery	F	RQD	Base	Thick-	Type of	Core Recover	r	RQD	Base	Thick-	Type of	Core Reco	very	RQD	Base	Thick-	Type of	Core Rec	overy	RQD	Base	Thick-	Cor	re Recovery	RQI) Base	Thick-	Type of	Core Recov	very	RQD	Base	Thick-	Type of	Core Recovery	RQD	Base
					Est. Top of Rock Elev. (ft.)	(ft.) Bedrock	Core Recovery Length Percer (ft.) (%)	nt Length (ft.)	Percent (%)	Elev. (ft.)	ness (ft.)	Bedrock L	ength Perce	nt Length	h Percent	Elev. (ft.)	ness (ft.)	Bedrock	Length P	ercent Le	ength Perce	nt Elev. (ft.)	ness (ft.)	Bedrock	Length I	Percent Lei	ngth Perce	nt Elev. (ft.)	(ft.)	drock Leng (ft.)	th Percent	Length (ft.)	Percent (%) Elev	ness (ft.)	Bedrock	Length Per (ft.) (rcent Length %) (ft.)	n Percent	Elev. (ft.)	(ft.) E	Bedrock L	(ft.) (%)	nt Length P	Percent Elev. (%) (ft.)
2006 B	ORINGS							()	()				()	. ,					()		()				. ,	. / .						. ,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,					, , ,	. ,	
B-3	1315±	21.7			1293.3																																							
B-4	1220±	15.6			1204.4																																							
B-5	1235±	40.0			1221.8	11.0 Shale	9.4 86	4.0	36	1210.8	7.8	Shale	7.8 100	1.7	22	1203.0	8.0	Siltstone	8.0	100	4.0 51	1195.0	D																					
B-7	1255±	60.0			1230.0	9.0 Shale	9.0 100	0.5	5	1223.0	13.7	Sandstone 1	137.0 90	2.3	17	1207.8	12.0	Siltstone	12.5	98	4.5 35	1170.0	D																					
B-8	1230±	17.8			1212.2																																							
B-9	1215±	20.0			1195.0																																							
2012 B	ORINGS						r r																																					
GB-5	1308.0	120.0	D-D	1200	1292.9	16.9 Sandstone Shale	14.8 88	1.6	9	1276.0	4.6	Carb Shale	1.4 30	0.0	0	1271.4	22.4	Limestone Claystone	15.2	68	0.4 2	1249.0	0 7.0	Carb Shale Coal	6.5	93 0	0.0 0	1242.0	28.5 San	dstone 26.6	6 93	11.4	40 1213.	5 13.3	Carb Shale CL, LM, SH	13.3 1	00 7.1	53	1200.2	12.2 Li C	mestone laystone	12.2 100	5.1	42 1188.0
GB-18	1174.6	38.0			1144.6	2.0 Limestone	1.7 85	0.0	0	1142.6	6.0	Claystone	5.6 93	0.0	0	1136.6																												
GB-19	1132.5	23.0	Н	1212	1117.1	7.6 Siltstone	7.2 95	3.1	40	1109.5																																		
GB-20	1124.9	23.0	1-1	1220	1109.5	4.6 Carb Clayshale	4.2 91	2.2	47	1104.9	3.0	Limestone	3.0 100	1.3	44	1101.9																												
GB-21	1141.2	22.5			1126.7	0.8 Sandstone	0.8 100	0.4	52	1125.9	3.0	Coal	0.9 30	0.0	0	1122.9	4.2	Siltstone	4.0	95	2.7 63	1118.	7																					
GB-22	1154.3	35.0	J-J	1226	1134.3	6.5 Shale Clayshale	6.5 100	0.0	0	1127.8	1.5		1.5 100	0.0	0	1126.3	7.0	Siltstone	7.0	100	1.5 21	1119.3	3																					
GB-23	1173.2	40.0	J-J	1212	1157.5	12.3 Sandstone Shale		5.5	45	1145.2		Linestone	12.0 100	6.0	50	1133.2																												
GB-24	1148.8	43.0	K-K	1220	1130.8	6.0 Sandstone Shale		1.7	28	1124.8	9.5	Carb Shale Coal	9.5 100	0.4	4	1115.3	9.5	Siltstone	9.5	100	5.3 56	1105.0	в																					
GB-25	1170.6	32.5	К-К	1226	1145.5	7.4 Sandstone Shale	7.0 95	2.0	27	1138.1					_																													
P-3	1114.6			1108	1099.2																																							
	1112.6	15.1		1108	1097.5																																							
P-7	1115.8	21.0				5.6 Sandstone w/ Shale	5.0 100	1.4	24	1094.8																																		
P-8	1118.2	21.0			1104.7	5.6 Sandstone w/ Shale	5.6 100	2.3	40	1099.1																																		

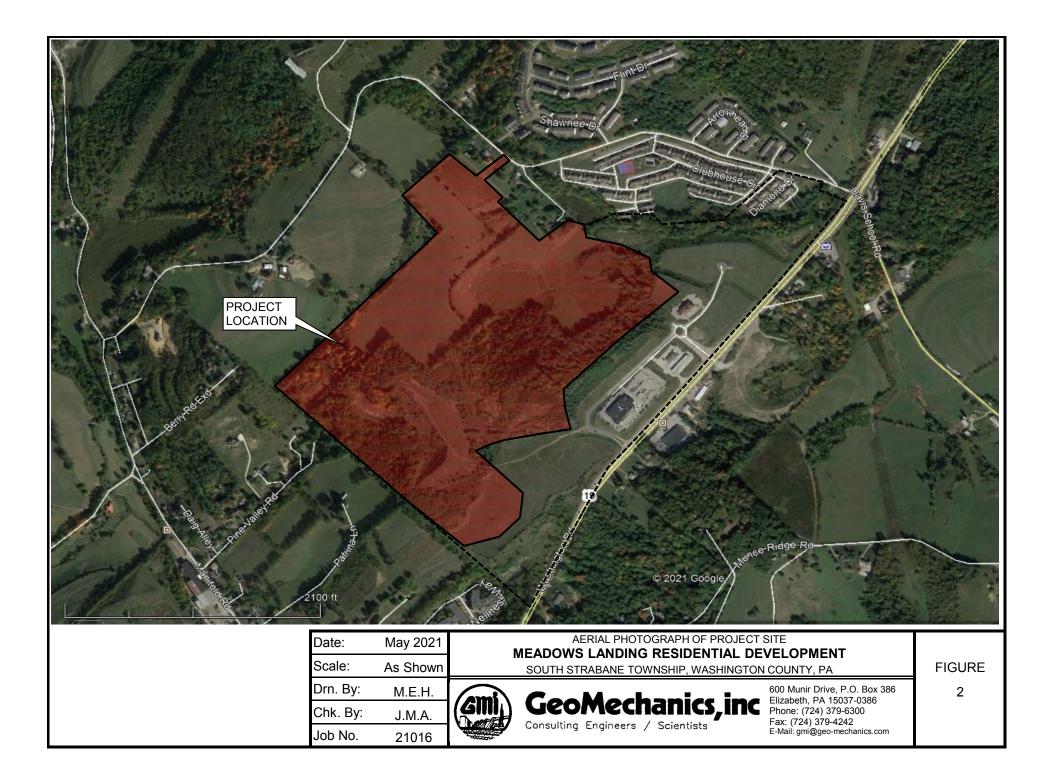
TABLE NO. 1B: SUMMARY OF PERTINENT BORING INFORMATION (BEDROCK)

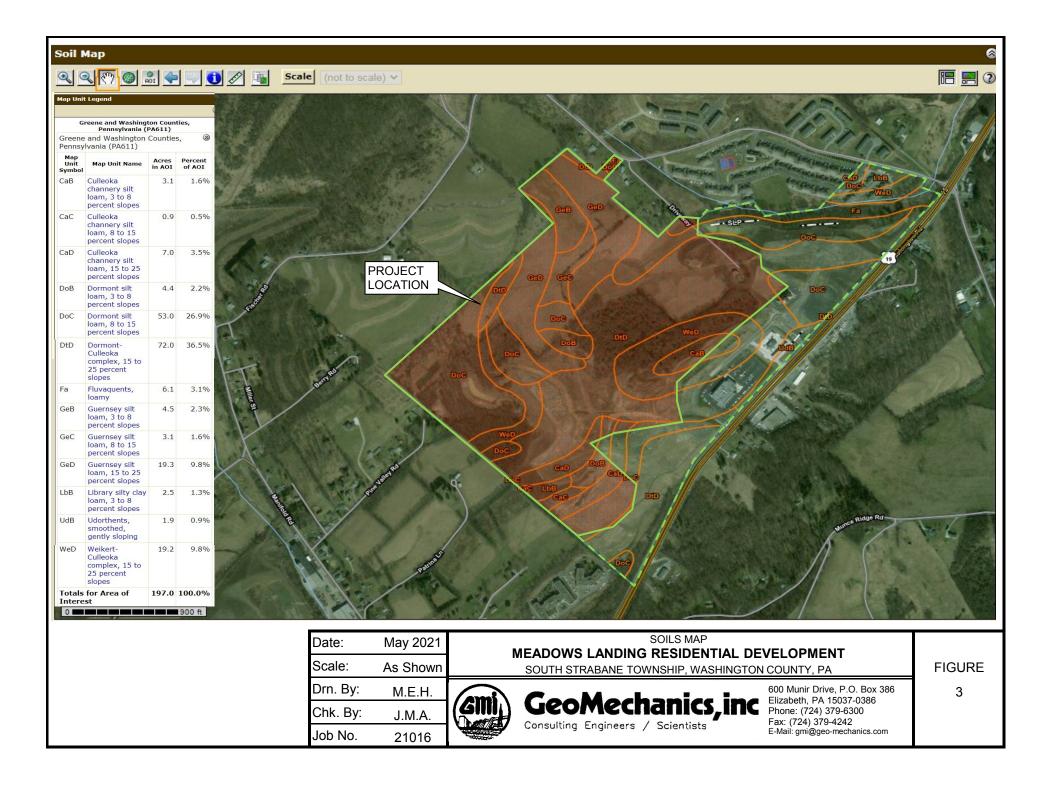
															Bedro	ock										
Boring	Exsisting	Total	Geologic	Proposed	Est.		_		Layer 1							Layer 2					_	-	Layer 3			
No.	Elevation (ft.)	Depth (ft.)	Cross- Section	Grade (ft.)	Top of Rock	Thick-	Type of	Core R	ecovery	RC	D	Base	Thick-	Type of	Core R	ecovery	R	QD	Base	Thick-	Type of	Core R	ecovery	RC)D	Base
					Elev. (ft.)	ness (ft.)	Bedrock	Length (ft.)	Percent (%)	Length (ft.)	Percent (%)	Elev. (ft.)	ness (ft.)	Bedrock	Length (ft.)	Percent (%)	Length (ft.)	Percent (%)	Elev. (ft.)	ness (ft.)	Bedrock	Length (ft.)	Percent (%)	Length (ft.)	Percent (%)	Elev. (ft.)
2021 B	ORINGS																									
TB-1	1234.4	41.5	A-A	1190	1203.4	5.2	Siltstone	3.5	67	0.0	0	1198.2	5.3	Limestone	5.1	96	2.0	38	1192.9							
TB-2	1233.0	19.0	A-A	1190	1214.0																					
TB-3	1107.6	17.0	B-B	1160	1090.6																					
TB-4	1256.1	32.5	R-R	1230	1234.6	11.0	Siltstone/ Shale	11.0	100	0.0	0	1223.6														
TB-5	1211.6	30.7	F-F	1182	1180.9																					
TB-6	1203.0	12.6	S-S	1238	1190.4																					
TB-7	1112.3	10.0	H-H	1170	1102.3																					
TB-8	1116.7	15.1	G-G	1170	1101.6																					
TB-9	1185.1	19.4	I-I	1217	1165.7																					
TB-10	1144.4	13.5	J-J	1185	1130.9																					
TB-11	1306.1	41.5	Q-Q	1272	1296.5	13.2	Sandstone	13.2	100	2.8	21	1283.3	7.7	Carb Shale and Coal	4.8	62	0.0	0	1275.6	11.0	Limestone	2.6	24	2.1	19	1264.6
TB-12	1170.4	15.6	K-K	1205	1154.8																					
TB-13	1230.2	17.0	L-L	1256	1213.2																					
TB-14	1213.8	25.2	L-L	1188	1188.6																					
TB-15	1190.0	30.2	M-M	1162	1159.8																					
TB-16	1226.9	11.0	0-0	1240	1215.9																					
TB-17	1204.7	25.5	0-0	1180	1179.2																					
Total	Drilling =	1001.9	feet																							

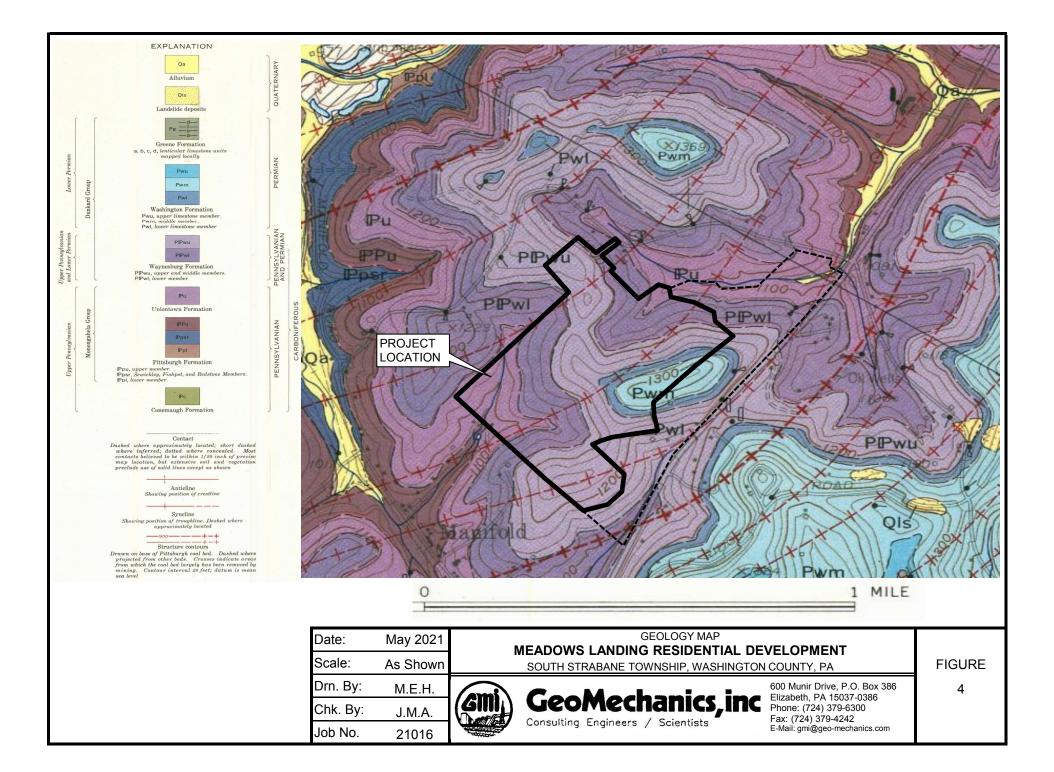
Z:\2021 Jobs\21016 - Meadows Landing\[21016 - Report Tables.xlsx]Table 1B

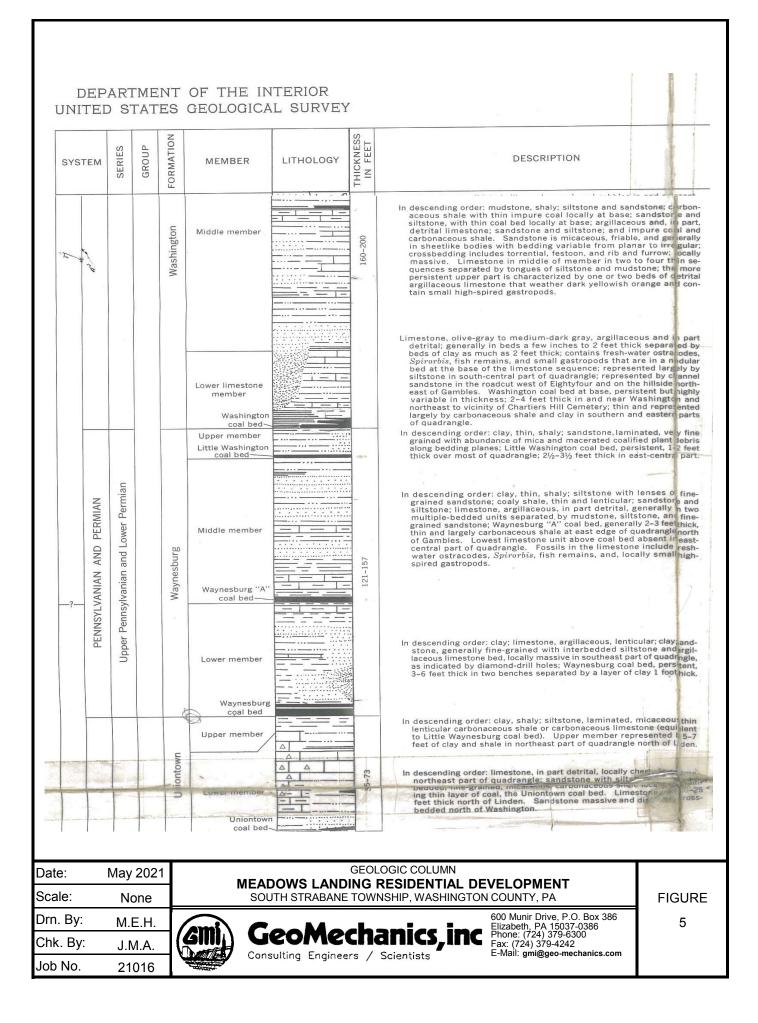
GMI Project No. 21016 May 2021

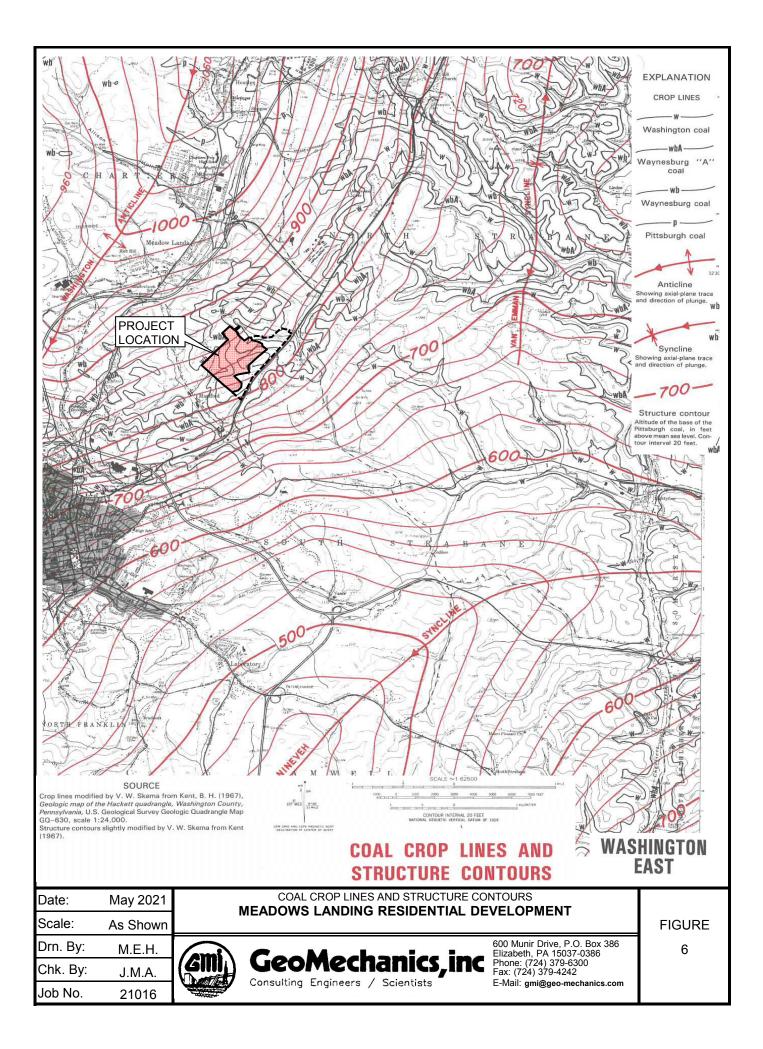

<u> TABLE NO. 2</u>

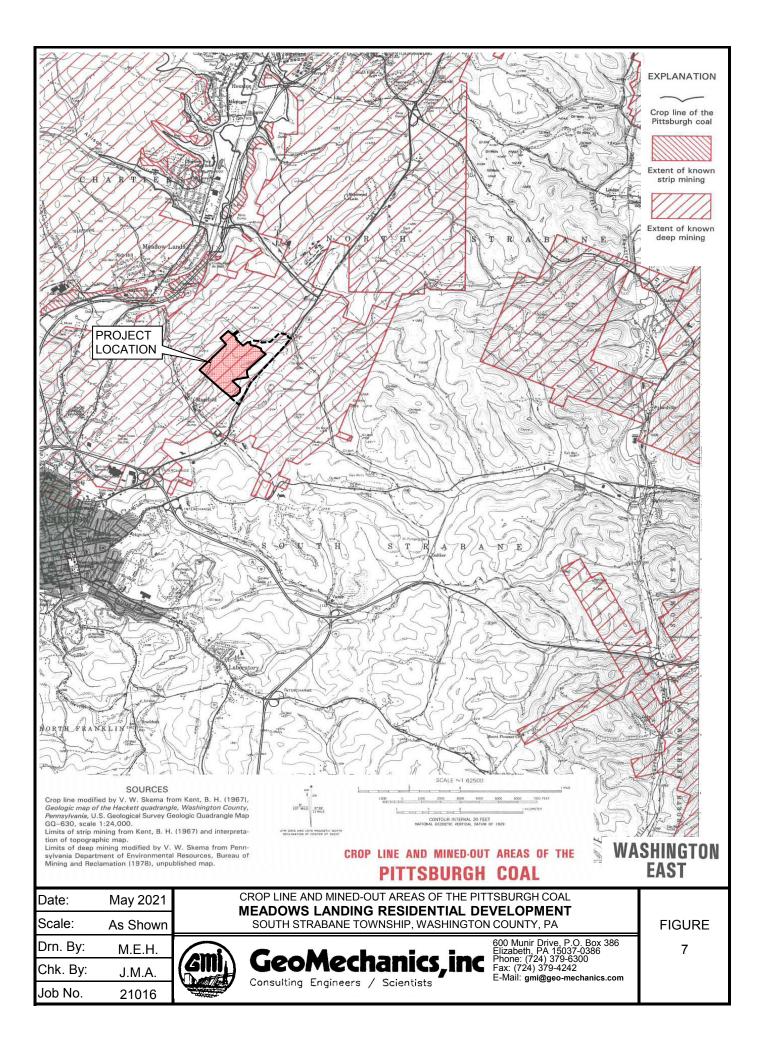

LABORATORY SOIL TESTING RESULTS

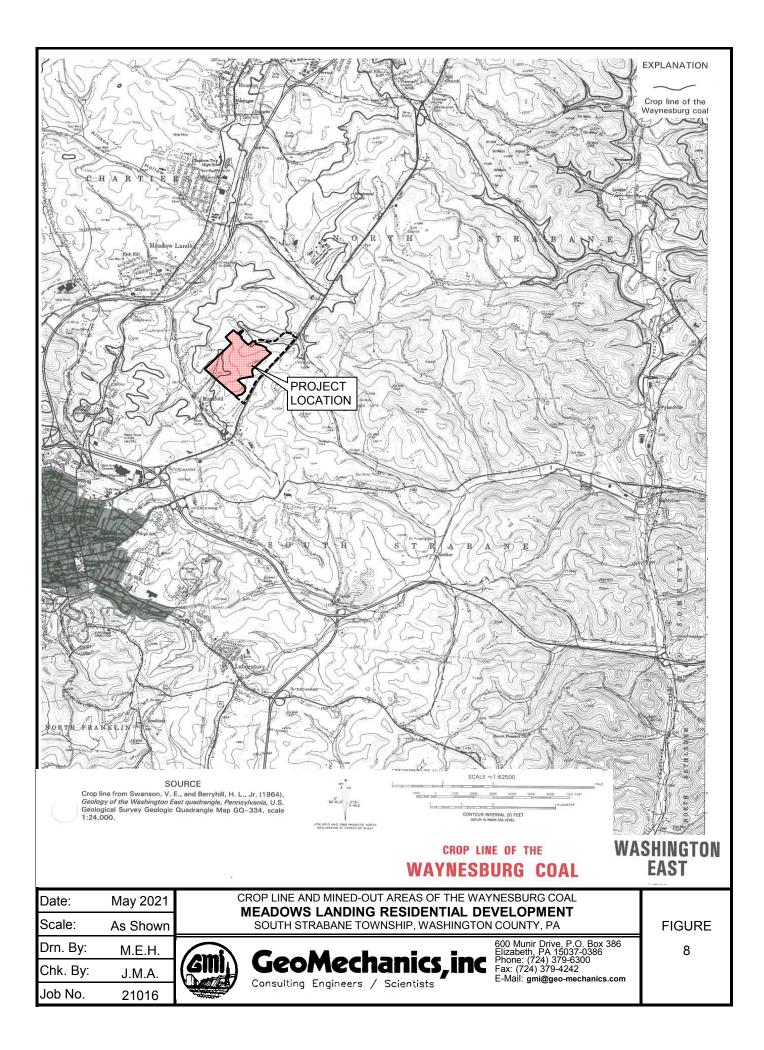

												LA	BORATOR	TEST RE	SULTS								
Dariaa	Sample	Sample	Soil	Atte	erberg Li	mits	Moisture		Grada	ation (%A	(STM)		Soil Clas	sification		Direct Shea	ar	Comp	paction	CE	BR	Frost	Description
Boring	Depth (ft)	Туре	Origin	L.L.	P.L.	P.I.	N.W.C. (%)	Gravel	Sand	Silt	Clay	<0.02 mm	AASHTO	USCS	φ (degrees)	Cohesion, c (psf)	Total Unit Weight (pcf)	Max Dry Density (PCF)	Optimum Moisture Content (%)	at 0.1 in. (%)	at 0.2 in. (%)	Group	Description
2012 La	ab Tests						·												. <u></u>		<u>.</u>	•	
GB-5	0.0 - 15.1	Jar	Residual	31	17	14	9.4	9	24	35	32	54	A-6(7)	CL	27.4	312 Remolded	132.4					F3	Silty Clay, Some Sand, Trace Gravel, Damp
GB-18	3.0 - 7.5	Jar	Colluvial	44	20	24	15.8	9	17	28	46	74	A-7-6(17)	CL								F3	Silty Clay, Little Sand Trace Gravel, Moist
GB-20	9.0 - 12.7	Jar	Residual	38	21	19	8.4	24	33	23	20	45	A-6(3)	SC								F2	Clayey Sand, Some Gravel, Some Silt, Damp
GB-22	9.0 - 13.5	Jar	Colluvial	31	18	13	13.9	22	28	31	19	50	A-6(3)	CL								F3	Silty Clay, Some Sand, Some Gravel, Damp
GB-23	3.0 - 7.5	Jar	Colluvial	49	25	24	22.5	7	19	33	41	74	A-7-6(18)	CL								F3	Silty Clay, Little Sand, Trace Gravel, Damp
GB-24	9.0 - 10.5	Shelby Tube	Colluvial	38	19	19	12.6	5	13	25	57	82	A-6(15)	CL								F3	Silty Clay, Little Sand, Trace Gravel, Damp
GB-25	12.0 - 16.5	Jar	Residual	37	21	16	16.3	31	28	22	19	41	A-6(3)	GC								F3	Clayey Gravel, Some Sand, Some Silt
2021 La	ab Tests																						
TB-2	9.0-12.7	Jar	Residual	33	21	12	8.7	20	27	36	17	35	A-6(4)	CL								F3	Silty Clay, Some Sand, Some Gravel, Damp
TB-3	6.0-10.5	Jar	Residual	45	20	25	19.1	3	20	34	43	60	A-7-6(18)	CL								F3	Silty Clay, Some Sand, Trace Gravel, Moist
TB-5	3.0-12.0	Bag	Residual	34	17	17	7.3	2	19	36	44	67	A-6(12)	CL				123.7	12.7	4.3	4.5	F3	Silty Clay, Little Sand, Trace Gravel, Damp
TB-6	3.0-7.5	Jar	Residual	44	22	22	17.0	13	19	31	38	55	A-7-6(14)	CL								F3	Silty Clay, Little Sand, Little Gravel, Moist
TB-8	3.0-7.5	Jar	Residual	42	22	20	16.9	6	16	27	51	67	A-7-6(15)	CL								F3	Silty Clay, Little Sand, Trace Gravel, Moist
ТВ-9	3.0-7.5	Jar	Colluvial	36	20	16	14.6	10	21	43	27	47	A-6(9)	CL								F3	Silty Clay, Some Sand, Trace Gravel, Damp
TB-10	3.0-7.5	Jar	Colluvial	41	23	18	18.6	8	20	41	31	58	A-7-6(12)	CL								F3	Silty Clay, Some Sand, Trace Gravel, Moist
TB-14	3.0-7.5	Jar	Colluvial	46	23	23	18.2	15	21	27	38	54	A-7-6(13)	CL								F3	Silty Clay, Some Sand, Little Gravel, Damp
TB-15	3.0-18.0	Bag	Residual	34	18	16	4.7	4	26	32	38	57	A-6(9)	CL				127.3	10.4	2.4	2.6	F-3	Silty Clay, Some Sand. Trace Gravel, Dry
TB-17	0.0-4.5	Jar	Colluvial	49	22	27	21.3	3	8	34	56	78	A-7-6(26)	CL								F3	Silty Clay. Trace Sand, Trace Gravel, Moist


Not Performed


FIGURES







APPENDIX A Test Boring Records Current Investigation (TB-1 through TB-17)

GM	GEO-N	ЛЕСН	IANIC	S, INC	2.		TEST	F BORING RECORD
Driller	er Ca	arlos	s Tre	vino			Boring	Surface gNo. TB-1 Elevation 1234.40 Sheet No. 1 of 2 shee
								GA Partners, LLC.
-	evel: O-Hr.				27.3			eadows Landing
Casing H	Iammer: Wt.		lbs.	Drop				
	Hammer: Wt							on South Strabane Twp., Washington Co., PA
	Size 2							d <u>04/14/21</u> Completed <u>04/15/21</u> Project No. <u>21016</u>
	Size							Drilling Fluid <u>Water</u>
	ion \	/erti			1	blogist's I	Log 🛛	
ELEVATION	In-Situ Tests and	RQD %	RUN-	REC.	SPOON BLOWS	BOTTOM DEPTH OF	DEPTH (Ft.)	DESCRIPTION REMARKS
교 1234.4	Instrumentation				INTERV.	SAMPLE		
1231.1					2		0.0/	Gray SILTY CLAY, Some Sand, Contains Root Fragments And
1233					2	1.5	1.4	
						1.5		
								(Topsoil)
								Black CLAYEY SAND, Little Gravel Little Silt, Medium Dense, Damp
					6			Little Siit, Medium Dense, Damp
					10 16	4.5		.Coal and Carbonaceous Shale
								(Residual)
1228.4							6.0	
1220.4					7		0.0	Gray to Orange Brown CLAYEY SAND
					11			And GRAVEL, Little Silt, Dense
					20	7.5		to Very Dense, Damp
								(Residual)
								(
					9		<u> </u>	
					32	10.0	10.2	
1224.2					50/.2	10.2	<u>+v.4</u>	Brown to Gray CLAYEY SAND And
								GRAVEL, Some Silt, Very Dense,
								Damp to Dry .Contains Calamities
					27		<u> </u>	.Decomposed Shale Tree and Other
					50/.3	12.8		Plant Fossils
								(Residual)
					10			\vdash
					16 50/.3	15.8		
					507.5			
1215.7					20	18.7	18.7	
					50/.3			Orange Brown to Brown CLAYEY
								GRAVEL And SAND, Little Silt, Very Dense, Damp
								.Highly Weathered Sandstone
					25	21.5		(Decideral)
					50/.0			(Residual)
								1
]
					23	24.8		
					50/.3	21.0	E	

(GM	GEO-N	MECH	IANIC	S, INC	2.		TES	Γ	BORING		ORD		
	چر <u>C</u> : :								o. <u>TB-1</u> Partners,	-	1234.4	0 Sheet N	No. <u>2</u> of <u>2</u> sheets
	evel: O-Hr				27.3				dows Landi				
	lammer: Wt.						_						
	Hammer: Wt						Locat	ion	South Stra	abane Tv	vp., Wa	shingto	on Co., PA
-	Size 2			-									oject No. 21016
													d Water
Orientat	ion	Verti	cal		Ge	ologist's I	log 🛛 🗌		SAF		_		
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN	REC.	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)		C	DESCRIPT	O N		REMARKS
Ш	matumentation				INTERV.			+					
							Ē	-					
1207.4							27.0						
1207.4					26		2/.0	-	Gray CLAYE	Y GRAVEL	And SA	ND.	-
					50/.2	27.7			Some Silt, Dry			-	
									-	d Chalo			
									.Decomposed	1 SHATE			
								+		(Residu	al)		
					31 50/.3	30.8	31.0						
1203.4		0	0.5	0.0	50/.3	31.5		-	Dark Gray S	STLTSTON	E. Thin	lv to	Auger Refusal/
		-	0.5	0.0		51.5			Indistinct			-	Top of Rock @
							=		Very Soft (31.0'
									Soils to Mo	oderatel	y Weath	ered	
									Exem 22 0	22 / 1 14	odoroto	1	
									.From 32.9 Weathered	-33.4° M	oderate	ТÀ	
								+	.From 33.4	-35.3' C	omplete	ly	
									Weathered				
1198.2		0	5.0	3.8		36.5	36.2	-	.From 35.3	-36.5' V	ertical		
		-							Fracture, 1				
												RQD=0%)	_
									Gray LIMES Thickly Bea		-		
									Massive, Ha				
									Weathered 1	-			
								+	Weathered				
									.Completely	Westhe	mod (To	aa of	
1192.9		40	5.0	4.8		41.5	41.5		Recovery) I	-	-		
									41.2-41.5'				
								$\left \right $.Vertical B Calcite Ve:				
									carcice ve.			.5 QD=38%)	
								1	Botto	om of Bo			
											-		
								T					
							<u> </u>	-					
					<u> </u>		<u> </u>	1					
								1					
						1	Ē						

(GM	GEO-I	месн	ANICS, INC	Ζ.		TEST	BORING	REC	ORD		
Drillor		arlog	Trevino			Roring		Surface	1222 0 5	boot No	o. <u>1</u> of <u>1</u> sheets
	C						A Partners,		1233.0 8	neet no	b. <u>I</u> of <u>I</u> sheet
			24 Hrs	Drv			adows Landing				
			lbs. Drop				adono Landini	.9			
			lbs. Drop			Locatio	on South Strak	oane Tw	www.washi	nato	n Co., PA
			Casing Size								ect No. 21016
											N/A
Orientat	tion	Verti	cal		ologist's L	.0g 🛛	SAF			5	
				SPOON							
ATIO	In-Situ Tests	RQD		BLOWS	BOTTOM DEPTH	DEPTH			ON		DEMARKO
ELEVATION	and Instrumentation	%	RUN-REC.	INTERV.	OF SAMPLE	(Ft.)	DE	ESCRIPTI	UN		REMARKS
可 1233	matumentation					<u>⊨ 0.0/</u>					
				2		<u> </u>	TOPSOIL				
1231.6				2	1.5	1.4					
					1.5		Gray SILTY (CLAY, So	ome Sand,		.Contains
							Trace Gravel				Organics and
1230						3.0					Root
				8			Sparse Coal				Structures
				17				(Colluvi			
				27	4.5		Black SILTY Dense to Ver				
							_		e, bump co		
							.Carbonaceou	us Shale	e and Coal		
							(F	Residual	L)		
				11		_					
				33							
1225.5				50	7.5	7.5	Brown to Gra			20	
							Gravel, Some	-	-		
						_	Graver, bom	e suna,	nara, bamp	-	.Contains
				18			.Decomposed	Shale			Calamities
				50/.3	9.8						Tree and Other
							_	(Residu	ual)		Plant Fossils
											CL
											_
				16	12.7	_					
				50/.2							
						_					
						_					
				16			_				
1217.1				50/.4	15.9	15.9					
							Brown to Ora	ange Bro	own CLAYEY		
							SAND, Some G	Gravel,	Very Dense	e,	
					1		Damp				
							,Carbonaceou	ug Shala	and Coal		
				12	18.7		, carbonaceou	us share	s and coar		Auger Refusal/
1214				50/.2		19.0		(Residua	al)		Top of Rock @
							Botton	m of Boi	ring @ 19.0	י (19.01
							_				
						_					
						_					
						_					
						_					
I	1	1 I	I	L	4 6						

E

GM	GEO-N	ЛЕСН	IANICS,	, INC			TEST	F BORING RECORD	
Driller	er Ca	arlos	s Trev	ino			Boring	Surface g No. <u>TB-3</u> Elevation <u>1107.60</u> Sheet No. <u>1</u> of <u>1</u> sheets	s
	[GA Partners, LLC.	
	evel: O-Hr.			rs.	Dry	_		eadows Landing	
Casing H	Iammer: Wt.		lbs. I	Drop		in.			
Sampler	Hammer: Wt	14	0 lbs. I	Drop	30	in.	Locatio	on South Strabane Twp., Washington Co., PA	
Sampler	Size 2	in. O.I	D. Casing S	Size _	3¼"	in. I.D.	Started	d <u>04/20/21</u> Completed <u>04/20/21</u> Project No. <u>21016</u>	
Core Bit	Size	N/	A		Dri	ller's Log	; 🗆	Drilling Fluid N/A	
Orientat	ion	/erti	.cal		Geo	ologist's I	Log 🛛 🔄	Drilling Fluid <u>N/A</u>	_
NO	In-Situ				SPOON	воттом			1
VATI	Tests and	RQD %	RUN-RE	EC.	BLOWS	DEPTH OF	DEPTH (Ft.)	D E S C R I P T I O N REMARKS	L
ELEVATION	Instrumentation	70			INTERV.	SAMPLE	(1.1)		L
1107.6					2		0.0	Brown SILTY CLAY, Trace Sand,	1
					2			Trace Gravel, Medium, Damp	L
1106.1					2	1.5	1.5		L
								.Contains Root Fragments	L
								(Topsoil) Brown to Orange Brown SILTY	L
								CLAY, Some Sand, Trace Gravel,	L
					4			Medium to Very Stiff, Moist	L
					3	4 5			L
					3	4.5			L
									L
								(Residual)	L
					7				L
					8				L
					8	7.5			L
								CL	L
									L
									L
					7				L
					7				L
					8	10.5			L
									L
									L
									L
					9				L
1094.6					12	10 -	13.0		L
					13	13.5		Gray SANDY GRAVEL, Some Silt, Little Clay, Very Dense, Damp to	L
								Dry	L
								-	L
					27	15.6		Highly Weathered Sandstone	1
					50/.1	T2.0			1
								(Residual) Auger Refusal/	L
1090.6							17.0	Top of Rock @	L
								Bottom of Boring @ 17.0'	ł
									L
									L
									L
									L
							Ē	+ $ $ $ $	1
									1
								4	1
									1
								4	1
									1
								4	1
									l
							<u> </u>	1	1
									L

GMI	GEO-N	1ECH	ANIC	S, INC	2.		TEST	BORING RECORD	
Driller Drill Rig								Surface No. <u>TB-4</u> Elevation <u>1256.05</u> Sheet No. <u>1</u> of <u>2</u> shee A Partners, LLC.	ts
Water Level:							Me	adows Landing	
Casing Hamm									
Sampler Hami		-						m South Strabane Twp., Washington Co., PA	
Sampler Size			-				_	04/09/21 Completed 04/12/21 Project No. 21016	
Core Bit Size		NQ	2		Dri	ller's Log	; L	Drilling Fluid Water	
	V	erti	cal		Ge	ologist's I	.og ⊠		Ŧ
TI ATI	-Situ ests and nentation	RQD %	RUN-	REC.	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION REMARKS	
교 ^{mardr} 1256.05	nemation					OANI EE	<u></u> ≣ 0.0/		┥
					3		<u> </u>	Brown SANDY CLAY, Some Silt, Trace Gravel, Soft, Damp	
					2	1.5	=	Hace Graver, Borc, Damp	
						1.5		.Contains Organics	
1253.05							3.0	(Fill)	
					5			Gray to Brown SILTY CLAY, Some	
					5			Sand, Trace Gravel, Stiff, Damp	
					8	4.5		(Desiduel)	
							=	(Residual)	
1250.05					4		6.0	Dark Gray to Brown CLAYEY SILT,	
					-4 6			Some Sand, Little Gravel, Stiff,	
					7	7.5	=	Damp	
					-				
								(Residual)	
1247.05							9.0		
					9			Black SILTY SAND, Trace Gravel,	
					22			Trace Clay, Medium Dense to	
					27	10.5		Dense, Damp	
							=	.Coal	
								(Residual)	
					7		=		
					12				
					17	13.5			
1241.05							15.0		
					8			Dark Gray to Gray CLAYEY GRAVEL,	
					16 14	16.5		Some Silt, Some Sand, Medium Dense to Very Dense, Damp to Dry	
					14	10.5			
								.Decomposed Shale	
								(Residual)	
					25	18.6			
					50/.1				
								_	
					50/.4	21.4	21.5		
1234.55	ł				50/.4		<u> </u>	Dark Gray to Gray SHALE With Auger Refusal/	
		0	1.0	1.0		22.5		Sandy Laminations, Thinly Top of Rock @	
		-						Laminated to Very Thinly Bedded, 21.5	
								Broken to Blocky, Slightly to	
								Highly Weathered	
1				1	1	1	⊢: I		1

GM	GEO-N	ИЕСН	IANIC	CS, INC	2.		TEST	BORING RECORD	
	چې Ca							No. <u>TB-4</u> Elevation <u>1256.05</u> Sheet No. <u>2</u> of <u>2</u> sh SA Partners, LLC.	neets
Water L	evel: O-Hr.	6.8	24	Hrs.				eadows Landing	
	lammer: Wt.								
								on South Strabane Twp., Washington Co., PA	
	Size 2							04/09/21 Completed 04/12/21 Project No. 21016 Drilling Fluid Water	_
Orientat	ion \	/erti	cal				Log 🛛 🔄		
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN	-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION REMARKS	
								.Clayey From 22.5-25.5' and 27.5-29.5'	
								(RQD=0%)	
		•				0.7			
		0	5.0	5.0		27.5			
1226.55							29.5	Gray SILTSTONE With Sandstone	
								Bands, Very Thinly to Thinly	
								Bedded, Broken to Blocky, Medium	
								Hard, Slightly Weathered	
1223.55		0	5.0	5.0		32.5	32.5	(RQD=0%)	
								Bottom of Boring @ 32.5'	
							=		
							<u> </u>	L	
							Ē		
							<u> </u>	-	

	GEO-1	MECH	IANICS, IN	IC.		TEST					
Drillor	r" C	arlo	Trovin	-		Boring		Surface	1211 60	Shoot No	. <u>1</u> of <u>2</u> sheets
-	C			5			GA Partners,		1211.00	Sheet No.	
	evel: O-Hr.			31.4			eadows Landi				
	- Hammer: Wt.							-			
	Hammer: Wt					Locati	on <u>South</u> Stra	abane Tv	vp., Wash	ingtor	n Co., PA
Sampler	Size 2	in. O.I	D. Casing Size	3¼"	in. I.D.	Starte	d <u>04/20/21</u>	Completed	04/20/2	21_ Proj€	ect No. 21016
	Size								_ Drill	ling Fluid	N/A
	ion	Verti	lcal	_ Ge	ologist's I	Log 🛛	SAF				
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-REC.	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	ſ	DESCRIPT	ION		REMARKS
ய் 1211.6	manumentation				SAMP LL	<u>≣</u> 0.0/	Orange Bro		CTAV T	++10	
				6	-		Gravel, Ve		-	LLIE	
				10	1.5			-1	,		
								(Coll	uvial)		
1208.6						3.0					
				4	-		Gray to Bro Sand, Trac				
				8	4.5		to Hard, Da		, very sc		
				15	1.5			-			
					-			(Resi	dual)		CL
											CII
				10	-						
				10 12	7.5						
				12	/.5						
					-						
					-						
				14	9.8						
				50/.3			-				
					-						
					-						
1199.6					-	12.0					
				16			Black SILT				
				41	13.3		Little Gra		se to Ver	У	
				50/.3	13.5		Dense, Dam	Þ			
					-		.Possible 1	Mine Gob			
					-						
				7			Coal Refu	se/Carbo (Resi		hale	
				2				(Rest	dual)		
				2	16.5						
					-						
1193.6					-	18.0					
1193.0				39			Gray CLAYE	Y SAND,	Some Grav	el,	
				50/.4	18.9		Very Dense				
					1		M	T data a			
					-	Ē	.Weathered	Limesto	пе		
					-			(Resi	dual)		
				50	a	<u> </u>	1				
				50/.2	21.7						
					1		1				
					1		l				
					4						
1187.6				10		24.0					
				18	-						

GM	GEO-N	ЛЕСН	IANIC	S, ING	С.		TEST	BORING	RECO	DRD	
	Ca							No. <u>TB-5</u>		.211.60 Sheet N	o. <u>2</u> of <u>2</u> sheet
Water L	evel: O-Hr.	Dry	24	Hrs				adows Landir			
	Iammer: Wt.						T agatia	- Couth Strai	hana Tur	., Washingto	
											oject No. 21016
											N/A
Orientat	Size ion \	/erti	cal		Ge	ologist's l	Log 🛛	SAF			
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	D	ESCRIPTIC) N	REMARKS
					50/.1	25.1		Gray CLAYEY Some Gravel Dry		ome Silt, ense, Damp to	
					27			.Decomposed	l Argilla	ceous Shale	
					50 50/.1	28.1		(Residual)	
					507.1						
								_			Top of Rock @
1180.9					50 50/.2	30.7	30.7			ing @ 30.7'	30.7'
								_			
								_			

GM	GEO-N	ЛЕСН	IANIC	S, INC	С.		TEST	BORING RECORD	
Driller	er Ca	arlos	Tro	vino			Boring	Surface No. TB-6 Elevation 1203.00 Sheet N	o 1 of 1 sheets
								GA Partners, LLC.	0. <u> </u>
	evel: O-Hr.				Drv			eadows Landing	
	lammer: Wt.								
	Hammer: Wt						Locati	on South Strabane Twp., Washingto	on Co., PA
	Size 2							1 04/08/21 Completed 04/08/21 Pro	
-	Size		-	-					N/A
Orientat	ion 🔤 🏹	/erti	.cal		Geo	ologist's I	Log 🛛 🔄	SAF	
	In-Situ				SPOON	воттом			
'ATI0	Tests	RQD	RUN-I	REC.	BLOWS	DEPTH	DEPTH	DESCRIPTION	REMARKS
ELEVATION	and Instrumentation	%	-		INTERV.	OF SAMPLE	(Ft.)		
1203					3		0.0 /	Dark Gray to Brown SILTY CLAY,	
					3			Some Sand, Trace Gravel, Medium	
					4	1.5		Stiff, Damp	
								.Contains Coal Fragments and Organics	
1200							3.0	(Fill)	
					4			Orange Brown to Gray SILTY CLAY,	
					7			Little Sand, Little Gravel,	
					10	4.5		Stiff to Very Stiff, Moist	
									CL
								(Residual)	
					4				
					8		=		
					8	7.5			
1193.5					3	9.5	9.5		
					50/.2			Gray to Brown CLAYEY GRAVEL,	
								Little Sand, Very Dense, Damp	
								.Decomposed Limestone	
					25	12.6	12.6	(Residual)	Top of Rock @
1190.4					50/.1	12.0	12.0	Bottom of Boring @ 12.6'	12.6'
								Bottom of Boring e 12.0	
								_	
							_		
							E_		
							Ē		
									
							E -		

Gmi	GEO-N	ЛЕСН	ANICS, I	INC.		TEST	BORING	RECORD	
Driller	, Ca	arlos	s Trevi	no		Boring		Surface Elevation <u>1112.30</u> Sheet N	No. <u>1</u> of <u>1</u> sheets
Drill Rig		C	ME-55			For K	GA Partners,	LLC.	
	vel: O-Hr.			. Dry			eadows Landin		
	ammer: Wt.								
	Hammer: Wt.					Locati	on South Stra	bane Twp., Washingto	on Co., PA
	Size 2							Completed 04/20/21 Pro	
	Size		A 	Dr	iller's Log	; L	SAF		d <u>N/A</u>
		/ertr	Cal		ologist s i		JAF		
ELEVATION	In-Situ Tests and	RQD %	RUN-REC		BOTTOM DEPTH OF	DEPTH (Ft.)	D	ESCRIPTION	REMARKS
	Instrumentation			INTERV.	SAMPLE		_		
1112.3				6		<u></u> ∎ 0.0		CLAY, Some Silt,	
				7		<u> </u>	Little Grav	vel, Very Stiff, Damp	
				12	1.5			/_ · · · · ·	
								(Residual)	
1108.8				7		3.5			
				7			Brown SILTY	SAND And GRAVEL,	
				10	4.5			, Medium Dense to	
							Very Dense,	, Damp	
							Uichle Wee	though Condetone	
				50/.4	6.4		.Highly wea	athered Sandstone (Residual)	
								(Residual)	
				17	9.7				Auger Refusal/
1102.3				50/.2	<u> </u>	10.0			Top of Rock @
							Botto	om of Boring @ 10.0'	10.0'
					_	<u> </u>			
					1				
						Ē	1		
						<u> </u>	L		
						<u> </u>]		
]				
]				
					1				

Priller	M⇒+⊀	t Hart			Rovino	Surface No. TB-8 Elevation 1116.74 Sheet N	[0 1 of 1 ~h~
orill Rig						GA Partners, LLC.	
ater Level: O-Hr.			Drv			eadows Landing	
asing Hammer: Wt.					<u> </u>		
					Locati	on South Strabane Twp., Washingto	on Co., PA
mpler Size 2						1 04/20/21 Completed 04/20/21 Pro-	
ore Bit Size							1 N/A
rientation	/erti	cal	Ge	ologist's l	Log 🛛		
Z In-Situ			SPOON	воттом			
NOLLY In-Situ Tests A and Instrumentation	RQD %	RUN-REC.	BLOWS	DEPTH	DEPTH (Ft.)	DESCRIPTION	REMARKS
	70		INTERV.	SAMPLE	(1)		
16.74			1		€ 0.0	Orange Brown SILTY CLAY, Some	
			2			Sand, Medium, Damp	
15.24			3	1.5	1.5		
						.Contains Root Fragments and Structures	
						(Residual)	
			5		=	Brown SILTY CLAY, Little Sand,	1
			6	-		Trace Gravel, Stiff, Moist	CL
			8	4.5			
						.Decomposed Shale	
						(Residual)	
			5				
			8				
			8	7.5			
					<u> </u>		
.07.74				-	9.0		
			6			Brown to Gray CLAYEY GRAVEL And	
			11	-		SAND, Little Silt, Medium Dense	
			2	10.5		to Very Dense, Damp to Dry	
						.Weathered Sandstone	
				-			
			50/.4	12.4	<u> </u>	(Residual)	
			507.4				
				1			
L01.64					15.1		Top of Rock @
			50/.1	15.1		Bottom of Boring @ 15.1'	15.1'
					<u> </u>		
				-			
				-			
				-			
				-		+	
					E		
				1			
				1			
]			
					Ē		

E

GM	GEO-N	ИЕСН	IANICS	5, INC			TEST	BORING		ORD		
Driller	Ca	arlos	s Trev	rino			Boring		Surface Elevation	1185.06	Sheet No	o. <u>1</u> of <u>1</u> sheets
	[GA Partners,				
Water L	evel: O-Hr	Dry	24 H	Irs	10.2		Me	eadows Landin	ng			
	lammer: Wt.											
	Hammer: Wt			-				on <u>South Stra</u>				
	Size 2											ject No. 21016
Core Bit	Size	N/	A							_ Drill	ing Fluid	N/A
	ion V	Verti			Geo	ologist's I	Log 🛛	SAF		_		
ELEVATION	In-Situ Tests and	RQD %	RUN-R	EC.	SPOON BLOWS	BOTTOM DEPTH OF	DEPTH (Ft.)	D	ESCRIPT	ION		REMARKS
넚 1185.06	Instrumentation				INTERV.	SAMPLE	0.0 /	-				
1184.76					4		0.0	TOPSOIL Brown Mottl	lod Cray		۸v	
					4 5	1.5		Some Sand,				
						1.5		Damp			,	
1182.06							3.0		(Collu	vial)		
					3			Brown to Or	-			
					6			CLAY, Some		race Grav	el,	
					11	4.5		Very Stiff,	, Damp			CL
								_				
									(Collu	vial)		
					7							
					11							
					13	7.5						
1176.06							9.0				. 7	
					4 9			Gray CLAYEY Some Silt,				
					9 7	10.5		_ 50mc 51107	neurum		шР	
								.Decomposed	l Siltst	one		
									(5, 1, 1, 1	- 7 \		
1173.06							12.0		(Resid			
					7			Brown to Gr				
					18			GRAVEL And Dense, Damp		ense to V	ery	
					22	13.5		Dense, Damp	,			
								.Decomposed	l Siltst	one		
									(- I.			
					10			-	(Residu	ai)		
					24							
					25	16.5						
					5							
					25							Top of Rock @
1165.66					50/.4	19.4	19.4					19.4'
								Botto	om of Bo	ring @ 19	.4'	
							Ë-					

GM	GEO-N	ИЕСН	IANIC	S, INC			TEST	BORING	REC	ORD		
	F C						Boring	No. <u>TB-10</u>	Surface Elevation	1144.40	Sheet N	o. <u>1</u> of <u>1</u> shee
Drill Rig	g	C	ME-55	6			For KC	GA Partners,	LLC.			
Water L	evel: O-Hr	8.2	24 1	Hrs	7.6		Me	adows Landi	ng			
Casing H	Hammer: Wt.		lbs.	Drop		in.						
Sampler	Hammer: Wt	. 14	0 lbs.	Drop	30	in.	Locati	on South Stra	abane Tv	wp., Wash	ingto	n Co., PA
Sampler	Size 2	in. O.I	D. Casing	g Size	3¼"	in. I.D.	Started	04/07/21	Completed	04/07/2	1 Pro	ject No. 21016
	Size						_					N/A
Orientat	ion	Verti	lcal		Geo	ologist's I	log 🛛 🗌	SAF			-	
	In-Situ				SPOON	BOTTOM						
/ATI	Tests and	RQD %	RUN-F	REC.	BLOWS	DEPTH OF	DEPTH (Ft.)	C	DESCRIPT	ION		REMARKS
ELEVATION	Instrumentation	70			INTERV.	SAMPLE	(г.)					
1144.4			l I		3		0.0 /	TOPSOIL				
1143.9					2		0.5	Brown Mottl	led Grav	to Black		
					3	1.5		SILTY CLAY				
					3	1.0		Gravel, Med				CL
								Moist			-,	
					4			.Organics	in Sampl	e		
					- 1 6							
					-	4 5	<u> </u>		(Collu	vial)		
					11	4.5						
							<u> </u>	_				
					4							
					7							
1136.9					7	7.5	7.5	Green GT NUT		3		
								Gray CLAYEY Some Silt,				
								some siit,	Mearum	Delise, Dai	шр	
								.Decomposed	d Siltst	one		
					4			12000mpober				
					6	10 -		_	(Residu	al)		
					8	10.5			-	-		
1132.4							12.0					Auger Refusal/
					7			Black CLAYN Little Silt		-	-	Top of Rock @
					7	13.1		LITTLE SIIT	c, very	Dense, Dai	цр	13.5'
1130.9					50/.1		13.5	.Decomposed	d Carbon	aceous Sha	ale (
							<u> </u>		(Residua			
										ring @ 13.	.5'	
							<u> </u>	-		5 2 20	-	
							Ē					
							Ē					
							É-					
							<u> </u>	-				
							É					
							Ē.					
							Ē					
							<u> </u>					
							Ē					
			ı I		I		=					

	GEO-N							Surface	
Driller _		Mat	t Hai	rt			-	No. <u>TB-11</u> Elevation <u>1306.1</u> Sheet N	o. <u>1</u> of <u>2</u> sheets
	g							GA Partners, LLC.	
	evel: O-Hr.						Me	eadows Landing	
	Hammer: Wt.						Locatio	South Strahano Two Washingto	
								on <u>South Strabane Twp., Washingto</u> I <u>04/14/21</u> Completed <u>04/14/21</u> Pro	
									$\frac{21010}{N/A}$
	tion \								
N	In-Situ				SPOON	воттом			
ELEVATION	Tests and	RQD %	RUN	-REC.	BLOWS	DEPTH	DEPTH (Ft.)	DESCRIPTION	REMARKS
	Instrumentation				INTERV.	SAMPLE			
1306.1 1305.5					2			TOPSOIL	
					3		<u> </u>	Brown CLAYEY SAND And SILT,	
					3	1.5		Little Gravel, Loose to Medium	
							=	Dense, Damp	
					15			(Residual)	
1302.1					8		4.0		
					9	4.5		Brown to Orange Brown CLAYEY	
								SAND And GRAVEL, Very Dense, Damp to Dry	
					9			.Decomposed Sandstone	
					23				
					50/.4	7.4		(Residual)	
							Ē		
						9.4			
1296.5					50/.4		9.6		Auger Refusal/
								_ Gray to Brown SANDSTONE, Thinly to Thickly Bedded, Blocky to	Top of Rock @
								Massive, Hard, Slightly	9.6'
		0	1.9	1.9		11.5		Weathered to Highly Weathered	
							Ē		
								.From 15.0-16.5' Vertical Joint with Crystalline Calcite on	
								Joint Faces (Probable Cause to	
								Lost Water)	
							=		.Lost Return
								.Conjugate Joint @ 20.0 Feet, _ RD=40°	Water @ 15.5'
								(RQD=21%)	
		40	5.0	5.0		16.5			
								_	
		8	5.0	5.0		21.5	=		
		5	- 3.0	- 3.0	1	21.5			
1283.3							22.8	Gran to Dark Gran GUALE	
								Gray to Dark Gray SHALE, Laminated Bedding, Broken, Very	
							<u> </u>	Soft, Completely Weathered to	
								Residual Soils	

	GEO-N	ИЕСН	IANIC	S, IN	С.		TEST	BORING RECORD	
	# *							Surface No. <u>TB-11</u> Elevation <u>1306.1</u> Sheet No.	. <u>2</u> of <u>2</u> she
	g				Garrad			GA Partners, LLC.	
	evel: O-Hr						Me	eadows Landing	
	Hammer: Wt. • Hammer: Wt						Locati	on South Strabane Twp., Washingtor	
	Size 2							d <u>04/14/21</u> Completed <u>04/14/21</u> Proje	
-	Size								N/A
								SAF	
					SPOON	воттом			
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN	REC.	BLOWS	DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION	REMARKS
ш								.Contains Sulfur and Iron	
								Staining Throughout	
1279.6		8	5.0	5.0		26.5	26.5	(RQD=0%)	
								Black COAL, Indistinct Bedding,	
								Indistinct Discontinuities, Very	
								Soft, Completely Weathered	
								.Appears to Be Mine Gob/Refuse,	
						-	<u> </u>	Low Recovery, Likely Blew Away	
1275.6							30.5	— (RQD=0%)	
								Gray to Dark Gray LIMESTONE,	
		0	5.0	1.6		31.5		Medium Bedded, Blocky Hard to	
								Very Soft, Fresh to Completely Weathered	
								weathered	
						-		.Dark Gray, Very Soft and	
						-		Completely Weathered From 32.8-	
						-		33. 8', 34.1-34.3', 36.0-37.5',	
								39.2- 40.2' and 40.5-41.5'	
								(RQD=19%)	
		24	5.0	1.2		36.5			
							<u> </u>		
							<u> </u>	+	
1264.6		18	5.0	0.9		41.5	41.5		
					1			Bottom of Boring @ 41.5'	
]			
							<u> </u>	⊢	
						1			
]			
	1				L	1	Ē-		

GM	GEO-N	месн	IANIC	S, INC	2.		TEST	BORING RECORD
Driller	چ≓ Ca	arlos	s Tre	vino			Boring	Surface No. TB-12 Elevation 1170.35 Sheet No. 1 of 1 sheet
	<u> </u>							$\underline{-12} \underline{-12} \underline{-12}$ including $\underline{-12} \underline{-12} $
	evel: O-Hr.				13.0			eadows Landing
	Hammer: Wt.							
	Hammer: Wt						Locatio	on South Strabane Twp., Washington Co., PA
	Size 2							d 04/06/21 Completed 04/06/21 Project No. 21016
	t Size							Drilling Fluid N/A
Orientat	tion	Verti	.cal				Log 🛛 🔄	
NO	In-Situ				SPOON	воттом		
VATI	Tests and	RQD %	RUN-	REC.	BLOWS	DEPTH OF	DEPTH (Ft.)	DESCRIPTION REMARKS
ELEVATION	Instrumentation	/0			INTERV.	SAMPLE	(1)	
L170.35	5				3		≣ 0.0/	Brown SILTY CLAY, Trace Sand,
					7			Trace Gravel, Stiff, Moist
168.85	5				5	1.5	1.5	
								.Contains Organics
								(Topsoil) Light Brown to Gray SILTY SAND
							Ē	And GRAVEL, Some Clay, Medium
					6			Dense, Dry
					10			
					13	4.5		.Decomposed Siltstone
								(Residual)
					15			
					11			
					12	7.5		
L161.35	5						9.0	
					6			Gray CLAYEY GRAVEL And SAND,
					23			Little Silt, Very Dense, Damp to
					33	10.5		Dry
								.Decomposed Shale
					50/.3	12.3	<u> </u>	(Residual)
					507.5	·		
								Top of Rock @
L154.75	5				21	15.6	15.6	15.6'
					50/.1			Bottom of Boring @ 15.6'
							<u> </u>	
						1		

GM	GEO-N	месн	ANICS, IN	С.		TES1	BORING RECORD	
	چ C		Trevino				Surface No. <u>TB-13</u> Elevation <u>1230.20</u> Sheet N GA Partners, LLC.	o. <u>1</u> of <u>1</u> sheets
			24 Hrs	7.3			eadows Landing	
	_		lbs. Drop					
			Dibs. Drop			Locati	on South Strabane Twp., Washingto	on Co., PA
-			Casing Size				d 04/06/21 Completed 04/06/21 Pro	
								i N/A
Orientati	ion	Verti	cal	Ge	ologist's L	og 🖂	Drilling Fluid	
1				SPOON				
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-REC.	BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION	REMARKS
1230.2				2		0.0	Brown SILTY CLAY And SAND,	
				3			Medium, Moist	
				3	1.5		.Trace Coal Fragments	
					1		(Residual)	
1227.2						3.0		
				3			Black CLAYEY SAND, Little	
				4			Gravel, Trace Clay, Medium	
				8	4.5		Dense, Damp	
							Coal (Residual)	
1224.2						6.0		_
				6		_	Brown CLAYEY GRAVEL And SAND,	
				8			Medium Dense, Damp	
				11	7.5	_	(Residual)	
							(Rebiddai)	
1221.2						9.0	Brown to Gray SANDY CLAY, Some	-
				4			Silt, Little Gravel, Stiff to	
				4	10.5	=	Very Stiff, Moist to Damp	
					10.5			
							.Decomposed Siltstone with	
							Calcareous Nodules	
				4		=	(Residual)	
				9				
				10	13.5			
1215.2						15.0		
				9			Gray to Brown CLAYEY GRAVEL,	.Hit Water @
				14			Little Silt, Very Dense, Wet to	15.0'
				40	16.5		Moist	Auger Refusal/
1213.2						17.0	.Decomposed Limestone	Top of Rock @
							Bottom of Boring @ 17.0'	17.0'
						<u> </u>		
						_		
						=		
						<u> </u>		
							\vdash	
						=	•	
				<u> </u>				
						<u> </u>	1	
				<u> </u>		<u> </u>	1	
						<u> </u>		
							1	
				-	1 1			

(GM	GEO-N	лесн	ANICS, ING	2.		TEST BORING RECORD						
Driller	5	Mati	t Hart			Boring	No. TB-14 Elevation 1213.85 Sheet N	a 1 of 2 sheet				
							A Partners, LLC.					
			24 Hrs.	Dry			eadows Landing					
			lbs. Drop				<u>.</u>					
) lbs. Drop			Locatio	on South Strabane Twp., Washingto	on Co., PA				
Sampler	Size 2	in. O.D	. Casing Size	3¼"	in. I.D.	Started	Started 04/16/21 Completed 04/16/21 Project No. 2101					
Core Bit	Size	N/.	A	Dri	iller's Log	g 🗌	Drilling Fluid	I N/A				
Orientati	ion	/erti	cal	Ge	ologist's l	Log 🛛 🔄	Drilling Fluid					
ELEVATION	In-Situ			SPOON	воттом							
VAT	Tests and	RQD %	RUN-REC.	BLOWS	DEPTH OF	DEPTH (Ft.)	DESCRIPTION	REMARKS				
ELE	Instrumentation			INTERV.	SAMPLE	· · /						
213.85				1			TOPSOIL					
				3		0.3	Brown to Black SILTY CLAY, Some					
				3	1.5		Sand, Little Gravel, Medium to	CL				
					-		Stiff, Damp					
							.Contains Carbonaceous Shale					
				5		=	Fragments					
				6	-		(Colluvial)					
				6	4.5	=						
					1		-					
				5								
				5	-							
				7	7.5							
					-	<u> </u>						
						9.0						
204.85				5		<u> </u>	Gray SILTY CLAY, Trace Gravel,	-				
				3			Trace Sand, Stiff, Damp					
				7	10.5		_					
							.Decomposed Claystone					
							(Peridual)					
201.85						12.0	(Residual)	4				
				15			Black CLAYEY GRAVEL And SAND,					
				27			Trace Silt, Medium Dense to Very Dense, Damp to Dry					
				40	13.5		Dense, Damp CO DIY					
						<u> </u>	.Decomposed Carbonaceous Shale					
							and Coal					
				27								
				15]		(Residual)					
				15	16.5							
						Ē						
195.85						18.0		-				
				43	18.7		Gray CLAYEY GRAVEL, Little Sand, Little Silt, Very Dense, Dry					
				50/.2	-		LICCLE DITC, VELY DENDE, DLY					
							.Decomposed Limestone					
					1		–					
192.85					1	21.0	(Residual)					
				22			Gray to Tan SILTY CLAY, Some	1				
				38	22.2		Gravel, Some Sand, Very Dense,					
				50/.3	22.3		Damp					
						Ē	.Decomposed Claystone					
					-							
							(Residual)	Top of Rock @				
				32		<u>⊨</u>		25.2'				

						Surface Boring No. <u>TB-14</u> Elevation <u>1213.85</u> Sheet No. <u>2</u>							
	g						A Partners,						
			24 Hrs lbs. Drop			Me	adows Landi	ng					
			0 lbs. Drop			Locatio	on South Stra	abane Twp.,	Washingto	on Co., PA			
			D. Casing Size				tion <u>South Strabane Twp., Washington Co., P</u> ed <u>04/16/21</u> Completed <u>04/16/21</u> Project No. <u>2</u> 1						
Core Bi	it Size	N/	'A		iller's Log			·		d <u>N/A</u>			
Orienta	tion	Verti	lcal	Ge	ologist's L	og 🛛	SAF						
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-REC.	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	C	DESCRIPTION		REMARKS			
교 1188.6						25.2							
				50/.2	<u></u>		Bottor	m of Boring	@ 25.2'				
						<u> </u>							
						<u> </u>							
							_						
						<u> </u>							
							_						
						<u> </u>							
						<u> </u>							
						<u> </u>	_						
						_							
						<u> </u>							
							_						
						<u> </u>							
						<u> </u>							
				1	1 1	Ē							

Driller		Matt	Hart				No. <u>TB-15</u> Elevation <u>1190.0</u> Sheet No.	
Orill Rig			$\underline{1E-55}$	26 1			A Partners, LLC. adows Landing	
			24 Hrs lbs. Drop			Me	adows handing	
						Locatio	n South Strabane Twp., Washington	n Co., PA
							04/16/21Completed04/16/21Proj	
								N/A
rientation	7	/ertic	cal	Ge	ologist's Lo)g ⊠	Drilling Fluid	
1	-Situ			SPOON	воттом			
JTA T	ests	RQD	RUN-REC.	BLOWS	DEPTH	DEPTH	DESCRIPTION	REMARKS
	and mentation	%		INTERV.	OF SAMPLE	(Ft.)		
.190				2	#	0.0/	Brown to Orange Brown SANDY CLAY	
				2			Little Gravel, Little Silt,	
				3	1.5		Medium Stiff, Damp	
						-		
							(Colluvial)	
.187						3.0		
				6			Orange-Brown SILTY CLAY, Some	
				7			Sand, Trace Gravel, Stiff to	
				7	4.5		Hard, Dru	
							- Decomposed diltators	
						_	Decomposed Siltstone	
				7		_	(Residual)	
				7				
				7	7.5	_		CL
								_
						_		
				9 12		_		
				12	10.5	-	-	
				12	10.5	_		
						_		
				11				
				25		-		
				43	13.5			
						_		
				25			-	
				21				
				13	16.5			
						_		
.172						18.0		
				21	18.9	_	Gray CLAYEY SAND, Some Gravel,	
				50/.4			Little Silt, Very Dense, Damp to Dry	
						_	1	
							Decomposed Sandy Shale	
						-		
				50	╞───╞		(Residual)	
				50/.2	21.7	-		
				50/.2				
						-		
						-		
				48	24.6			
1		1		50/.1	24.0			

GM	GEO-N	ЛЕСН	IANIC	S, INC	2.		TEST	BORING	G REC	ORD	
	چچ ج									1190.0 Sheet	No. <u>2</u> of <u>2</u> sheet
	evel: O-Hr				26.1	_		eadows Land:			
	Hammer: Wt.										
Sampler	Hammer: Wt	14	0 lbs.	Drop	30	in.				wp., Washingt	
	Size 2							04/16/21	_ Completed		oject No. 21016
Core Bit	Size ion \	N/	<u>A</u>		Dri	ller's Log	g ∐	SAF		Drilling Flu	id <u>N/A</u>
		/ertr			1		1	SAF			
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)		DESCRIPT	ION	REMARKS
							E				
					50	27.6					
					50/.1		Ē				
							<u> </u>				
1150 0							30.2				Top of Rock @ 30.2'
1159.8					50/.2	30.2		Bott	om of Bo	oring @ 30.2'	
							=				
							<u> </u>				
								_			
								_			
							Ē	–			
											
											
					1		-				1

GM	GEO-N	ЛЕСН	IANICS	3, INC	2.		TEST	BORING	REC	ORD		
			л П тот				Donino		Surface	1226 00	Cheet Me	1 of 1 shoot
	Ca							A Partners,	-	1226.90	Sheet No	. <u>1</u> of <u>1</u> sheet
	evel: O-Hr.				Drv			adows Landi				
	lammer: Wt.								9			
	Hammer: Wt						Locati	on South Stra	abane T	wp., Wash	ingto	n Co., PA
	Size 2			-								ect No. 21016
	Size											N/A
	ion \				Geo			SAF		_		
NO	In-Situ				SPOON	BOTTOM						
ELEVATION	Tests and	RQD %	RUN-R	₹EC.	BLOWS	DEPTH OF	DEPTH (Ft.)	D	DESCRIPT	ION		REMARKS
_	Instrumentation				INTERV.	SAMPLE	. ,					
1226.9 1226.4					3		<u></u> ∎ 0.0/ ≣ 0.5/	TOPSOIL				
					3		<u></u> € 0.5	Brown SILTY		Some Sand	,	
					4	1.5		Medium, Dan .Contains (-			
								.contains (-	luvial)		
1000 0							3.0		(,		
1223.9					6		<u>3.0</u>	Brown SILTY	Y CLAY.	Some Sand	-	
					5			Stiff, Mois		Dome Dama	,	
					5	4.5						
								.Siltstone		lcareous		
								Siderite No		dual)		
1220.9							6.0	-	-	-		
					4			Brown to G				
					6			Some Sand, Dense, Dam		Silt, Med	lum	
					10	7.5		Dense, Dum				
								.Decomposed	d Siltst	one		
1217.9							9.0	((Residua	1)		
					4			Gray CLAYES	Y GRAVEL	, Some Sa	nd,	
					42	10.2		Some Silt,				Top of Rock/
					50/.2	10.2		.Decomposed				Auger Refusal @ 11.0'
1215.9			 				11.0		(Residu			6 11.0
								Botto	om of Bo	ring @ 11	.0'	
							<u> </u>					
								_				
							Ē	_				
							<u> </u>					
							<u> </u>					
		1	i 1				E					

GMI GEO	D-MECH	ANICS, ING	С.	-	TEST	BORING RECORD
Driller					Boring	SurfaceNo
Drill Rig						GA Partners, LLC.
Water Level: O-H					Me	eadows Landing
Casing Hammer: V						
Sampler Hammer:	-					m South Strabane Twp., Washington Co., PA
Sampler Size <u>2</u>						1 04/15/21 Completed 04/15/21 Project No. 21016
Core Bit Size	N/.	A	Dri	iller's Log		Drilling Fluid N/A
Orientation	Verti	cal	Ge	ologist's L	og 🛛	Drilling Fluid <u>N/A</u>
NOLLEY In-Situ Tests and Instrumentat	RQD %	RUN-REC.	SPOON BLOWS	BOTTOM DEPTH OF	DEPTH (Ft.)	DESCRIPTION REMARKS
	ion		INTERV.	SAMPLE	. ,	
L204.75			2		0.0	Brown to Gray SILTY CLAY, Trace
			2			Sand, Trace Gravel, Medium to
			4	1.5		Stiff, Moist
					_	
				1		.Contains Root Fragments/ CL
						Structures (Collumial)
			4			(Colluvial)
			4			
			5	4.5		
L198.75					6.0	
			5		_	Light Gray to Orange Brown SANDY
			6			CLAY, Some Silt, Little Gravel,
			4	7.5		Stiff to Very Stiff, Damp
					_	(Residual)
						(,
			7			
			8	10 -	=	-
			14	10.5		
					=	
					12.0	
192.75			22		= 12.0	Gray CLAYEY SAND, Some Gravel,
			39		_	Some Silt, Very Dense, Damp to
			50/.4	13.4		Dry
			557.4			
				1 8		.Decomposed Shale with Fissile
				1 1		Fabric Preserved
			23			
			37	1 8		(Residual)
			30	16.5		
				1		
186.75				1	18.0	
			50/.2	18.2		Brown to Orange Brown SILTY
						GRAVEL And SAND, Little Clay,
						Very Dense, Damp to Dry
						Decomposed Sandstone
						(Residual)
			27			(Nepidual)
			50/.4	21.9		
					_	
			27			Top of Rock @ 25.5'
			35	I E	=	23.3.

					D	_		A Partners, LLC.						
	evel: O-Hr ammer: Wt.						Me	adows Landing						
	Hammer: Wt.						Locatio	n South Strabane Twp., Washingto	on Co., PA					
	Size <u>2</u>													
	Size								d <u>N/A</u>					
entati	ion V	Verti	cal		Geo	ologist's l	Log 🛛 🔄	Drilling Fluid						
NO	In-Situ				SPOON	воттом								
ELEVATION	Tests and	RQD %	RUN-R	EC.	BLOWS	DEPTH OF	DEPTH (Ft.)	DESCRIPTION	REMARKS					
	Instrumentation				INTERV.	SAMPLE								
9.25					22	25.5	25.5							
								Bottom of Boring @ 25.5'						
							_							
							_							
								_						
								_						
								-						
								_						

APPENDIX A-1:

Relevant GeoMechanics, Inc. Test Boring Records 2012 Geotechnical Investigation GB-1 through GB-25 P-1 through P-8

Solution Robit and model Robit and model Robit and model State	GM	GEO-N	AECHA	NICS	, INC.	•	1	EST	BORING	RECO	ORD				
Deff Ng CdB - 55 For KG3 Parthears, LLC. Calle Hanner: W. Bb Drep b. Sampler Hummer W. 100 Desting Size 34" Sampler Hummer W. 100 Desting Size 34" Core Billsize MQ2 Drifter is g	Driller		Joe	Durk	0			Boring No	CB-5	Surface	1308 0 5	heat No	τ.	e =	
Water Lawei, O-Hr. B2.2 24 Hr. Meadows Landing Sampler Size 16.00. Casing Size 10.01. Leading South Strahans Typ., PA. Sampler Size 1.0.00. Casing Size 30. In. D. Leading South Strahans Typ., PA. Core BH Size 1.0.00. Casing Size 34% In. D. Leading South Strahans Typ., PA. Core BH Size 1.0.00. Casing Size 34% In. D. Dolling Flad Water Strahans Signific Human: With MO2 Dolling Flad Water Strahans Dolling Flad Water Strahans Core BH Size No.0000 Brown Greaty Mottlad SILPY CLAY, Strahans Maximum Strahans Water Strahans 3307.5 3 3 Strahans Strahans Strahans Strahans 3307.6 3	Drill Rig	 [CM	E-55	-		-							1 <u> </u>	ieets
Calleg Hammer, Wi ibs. Drop in	Water L	evel: O-Hr.	88.2	24 H	ĺrs.		-								
Sampler Hammer: Wt. 140 Dis. Drop 30 in. Loadon South Strabane Try PA Core BH Size NQ2 Dollar's Log I Dolar's Log I Description New Ison Number Size Series Series Dolar's Log I Description New Ison Number Size Series Series Description Description New Ison Number Size Series Series Description New New New Ison Series Series Series Series New New New Series New New New New New New Series Serie	Casing H	Iammer: Wt.		lbs. :	Drop	i	- 11.								
Sampler Size 2 In .0. D. Celling Size 34" In .10. Started 09/28/12 Complete 03/20/12 Project Ne. Orderstrike Wartice1 Definite Ing DefinitIng DefinitIng Defini	Sampler	Hammer: Wt.	140	lbs.]	Drop	30 1		Location	South Stra	bane Tw	P. PA		·		
Core Bills Line NQ2 Defines Lag Contention We NQ2 Services Received Receive	Sampler	Size 2	in. O.D.	Casing	Size	34" 1	n. I.D,	Started	03/28/12	Completed		Proie	ct No.	12022	_
Sector Politic state RQD RUKAREC. STOCN DEFINE OFFICE DEFINE OFFICE 1309 1309 3 1000 TOPSOIL TOPSOIL Reading the state of the sta	Core Bit	Size	NQ2	_		Drill	er's Log []. "		•					_
Sector Politic state RQD RUKAREC. STOCN DEFINE OFFICE DEFINE OFFICE 1309 1309 3 1000 TOPSOIL TOPSOIL Reading the state of the sta	Orientat	ion	Vertic	al		Geol	ogist's Lo	g 🛛	JMA/TD	W	-	-			_
1307.5 3 1.5 100001 Gray Mottlad STLFT CLAY, Little Sand, Trace Gravel (Rock Fragments), Medium Stiff to Hard, Moist to Damp 0 9 10 Residual) C 1300 10 Residual) C 1300 10 Residual) C 1300 14 Residual) C 1300 Brown Gray SLEY CLAY, Some Sand, Little Gravel, Little Silt, Very Dense, Damp 1282.9 50/.1 15.1 1282.9 50/.1 15.1 1282.9 1282.9 1282.9		In-situ Testa end	RQD			SPOON BLOWS	BOTTOM DEPTH OF	DEPTH			TION		R	EMARKS	
1292.9 50/.1 15.1 Brown And Gray Micaceous Fine-Grained SANDSTONE, Thinly Laminated to Thinly Bedded, Broken to Blocky, Medium Hard Top of 15.1' 0 1.9 1.9 17.0 Brown And Gray Micaceous Fine-Grained SANDSTONE, Thinly Laminated to Thinly Bedded, Broken to Blocky, Medium Hard .Very Shaly in Upper Portion From 15.1-19.0' .Lost 18.0' 18 5.0 4.3 22.0 .Moderately Weathered .Lost 18.0' 1284.6 Brown SILTY SHALE, Thinly Brown SILTY SHALE, Thinly	1307.5					3 4 9 10 11 10 14 20 33 50/.4	4.5	8.0	Brown Gra Little Sa Fragments Moist to Brown Gra Little Gr Dense, Da	nd, Trac), Mediu Damp (Resi (Resi y SILTY (avel, Li mp	e Gravel (F m Stiff to dual) CLAY, Some ttle Silt,	Nock Hard, Sand,		CL	
						50/.1	\ <u>15.1</u> / 17.0		Grained S. Laminated Broken to .Very Sha 15.1-19.0 .Moderate	ANDSTONE to Thin Blocky, ly in Upp ' ly Weath	, Thinly ly Bedded, Medium Har per Portion ered (RQD=	rd 1 From	15.1 ·	Water	-

.

.

Water Le Casing H Sampler 1				č		-		o. <u>GB-5</u> Elevation <u>1308.0</u> Sheet No.	
Casing H Sampler I Sampler :						-		Partners, LLC.	
Sampler 1 Sampler 1	evel: O-Hr.						Mea	dows Landing	
Sampler :	ammer: wt.	140	105. 1 [he_]	Drop	30 1	n. 1	Locoffor	South Strabane Twp., PA	
	Size <u>2</u>							<u>03/28/12</u> Completed <u>03/30/12</u> Proje	et No. 12022
Orientati									
	on	Verti	al		Geol	ogist's Lo	g 🖾	Drilling Fluid Drilling Fluid	
ELEVATION	in-silu Tests	RQD			SPOON BLOWS	BOTTOM			
EVA	and	%	RUN	REC,		DEPTH OF	DEPTH (Ft.)	DESCRIPTION	REMARKS
	Instrumentation				INTERV.	SAMPLE		.Moderately Weathered	
								.Moderatery weathered	
								.Highly Weathered From 30.5-32.0'	
		14	5.0	5.0		27.0			
						27.0		(RQD=0%)	
			· .				<u></u>	·····	
					·				
		1							
1276		o	5.0	3.6	. <u> </u>	32.0	32.0		
								Dark Gray CLAY And CARBONACEOUS	
								SHALE, Thinly Laminated, Very	Boundary
								Broken, Very Soft	Estimated Due to Poor
								.Highly Weathered	Recovery
1									
								- (RQD=0%)	
1271.4		0	5.0	1.8		37.0	36.6		
			3.0			31.0		Gray LIMESTONE WIth Occasional Soil Seams, Thinly Bedded, Broken	
								to Blocky, Hard	
ļ								.Vertical Fracture With Stains	
1					i 			From 39.1-39.9'	
							Ē	Poor Recovery Due to Soft Clay/	
								Claystone Beds	
								(RQD=0%)	
1000 0		0	5.0	3.2		42.0	42.4		
1265.6								Gray CALCAREOUS CLAYSTONE,	
								Indiscernible Bedding, Broken,	
					••••			Very Soft	
								mon	
								(RQD=0%)	
					· · · · · · · · · · · · · · · · · · ·		1	—	

46.6

Gray LIMESTONE With CLAYSTONE BEDS, Very Thinly to Thinly Bedded, Very Broken to Blocky, Hard (Limestone) to Very Soft (Claystone)

(RQD=6%)

47.0

) mitimu

<u>tuskulus</u>

5.0 5.0

0

.

1261.4

GEO-MECHANICS, INC.	TEST BORING RECORD
	Surface

Gmi

.

	- <u></u>							0. <u>GB-5</u> Partners,	Surface Elevation <u>1308.0</u> Sheet No. LLC.	<u> </u>
Water L	evel: O-Hr.	88.2	24 H	Irs		_		dows Landin		
	Iammer: Wt.									
	Hammer: Wt.								ibane Twp., PA	
Sampler	Size <u>2</u>	In. O.D.	. Casing	Size	<u>3'4"</u> 1	n. I,D.	_ Started _	03/28/12	Completed <u>03/30/12</u> Proje	
Core Bit	Size	NQ2 Vontri	2		Drille	er's Log L		03/28/12	Drilling Fluid	Water
		Vercr					<u> </u>		n	<u> </u>
ELEVATION	in-situ Tests	RQD		-REC.	SPOON BLOWS	BOTTOM DEPTH	DEPTH			
Ĩ	and Instrumentation	%	RUN	HEC.	INTERV.	OF SAMPLE	(FL)		DESCRIPTION	REMARKS
ш			<u> </u>				=	_		
		8	5.0	3.6		52.0				
							53.0			
1255			ł				2 33.0	Dark Grav	CLAYSTONE,	Boundary
								_	ible Bedding, Broken to	Estimated Du
									oft to Very Soft	to Poor
								_	(200-0%)	Recovery
									(RQD=0%)	
					· · ·					
		0	5.0	1.0		57.0				
1249				ĺ			<u>≡</u> ≣ 59.0			
								Dark Grav	CARBONACEOUS SHALE With	7
								Thin Coal	Seams, Thinly	
								Laminated	, Very Broken to Broken, edium Hard	
								SOIT TO M	edium Hard	
		o	5.0	4.6		62.0			ms From 59.3~59.6',	
								60.1- 60.	5', 63.5~65.0'	
						1		.Traces o	f Pyrite	
									2	
								.Clayston	e From 65.8~66.0'	
									(RQD=0%)	
								-	(0.2.0 0.0)	
1242							66.0			
		14	5.0	4.9		67.0		-	nated Fine-Grained	
			0.0		{		<u> </u>		, Thinly Laminated to ly Bedded, Broken to	
									edium Hard	
							<u> </u>	Obelet De		
								. Shaly Pa	rungs	
				1				-	(RQD=36%)	
					·					
1236.3										
				ļ			<u> </u>	Predomina	ntly Gray SILTY SHALE	1
					i			With Occa	sional Sandy Laminations	5
									Beds of Sandstone, minated to Very Thinly	
									roken to Blocky, Medium	1
							<u> </u>	Hard		ļ
	i i i i i i i i i i i i i i i i i i i						≣			

GMI	GEO-MECHANICS, INC.
-----	---------------------

Driller	~	JOA	Durk	•			Dowing N	0. <u>GB~5</u>	Surface	1200 0	61 N.	4
	3					-		Partners,		1308.0	Sheet No.	4 of 5 sheet
	evel: O-Hr					-		dows Landi				······
	Hammer: Wt.						1466	COWS HAILOT	<u> </u>			
	Hammer: Wt.						Location	South Stra	bano Tw	PA		
	Size 2										12 Proto	et No. <u>12022</u>
	Size				n.tu				Completed			Water
Orientat	ion	Verti	cal		Geol	ogist's Lo	u g⊠	JMA/TD	W		ung riusu .	Mater
	r				SPOON	1	· · · · · · · · · · · · · · · · · · ·					
EL EVATION	in-situ Tests	RQD	RUN	-REC.	BLOWS	BOTTOM DEPTH OF	DEPTH		BEOODID:			
E	and instrumentation	%	Now.	-neo.	INTERV.		(Fl.)		DESCRIP	HUN		REMARKS
<u></u>		<u> </u>						.Thin Coa	1 Red Fr	om 83 4-8	3 71	
		i				-		, 11111 (OG	I DEG FI	011 05.4-0	5.7	
						·						
		26	10.0	10.0		77.0				(RQ	D=41%)	
						77.0						
]						
							<u> </u>					
					ļ							
						-	Ē	-				
						ł						
						1						
				ļ								
						1						
]						
								-				
		55	10.0	10.0		87.0						
					···							
								-				
			-									
		27	5.0	3.1		92.0	94.5					
1213.5		1		·	-		<u>≡</u> ≡ 94.5					•
1213.3							- 94.3	Dank Cross	(APDONA)			
								Dark Gray Very Inte	nselv Tan	usous SHA minated '	Verv	
1212.2							95.8	_ Broken to	Broken,	Medium H	ard	
								ł	,			
		47	5.0	5.0		97.0	H	-	.	/ - · · -		
	ĺ		T					.Vertical 94.5-95.4		e/Joint F.	rom	
							<u> </u>	J=10-3014				
	ľ							.Clayston	e From 93	5.4-95.8'		
							H	1		-		
					·			L		(R	QD=0୫)	

		_						Surface	
Driller		Joe	Durk	0		-		o. <u>GB-5</u> Elevation <u>1308.0</u> Sheet No	
								Partners, LLC.	
	evel: O-Hr Iammer: Wt.						Mea	dows Landing	· · · · · · · · · · · · · · · · · · ·
	Hammer: Wt.						Location	South Strabane Twp., PA	
								03/28/12 Completed 03/30/12 Project	No. 12022
	Size						_		
Orientat	lon	Verti	cal		Gcol	ogist's Lo	g 🖾	Drilling Fluid JMA/TDW	
ION	In-situ				SPOON				
ELEVATION	Tests and	RQD %	RUN	-REC.	BLOWS	DEPTH OF	DEPTH (Fl.)	DESCRIPTION	REMARKS
ELE	instrumentation				INTERV.	SAMPLE			
		1						Gray LIMESTONE, Thinly to Thickly Bedded, Broken to Massive, Hard	
					·			to Very Hard	
						-		·····	
								(RQD=76%)	
1205.3						1	<u>102.7</u>	CHOIL OF AVELONE (Collections)	
]		Gray CLAYSTONE (Calcareous), Indiscernible Bedding, Broken,	
1204	5			J			104.0	Soft	
					ļ	ļ			
						-		(RQD=0%) Gray SILTY SHALE, Thinly	
						1		Laminated, Broken to Blocky,	
				1		1		Medium Hard	
1201		56	10.0	10.0		107.0	107.0		
1200.2							107.B	(RQD=45%) Dark Gray CARBONACEOUS SHALE,	
~~			1			1		Thinly Laminated, Broken, Medium	
						-		Hard	
					·				
								Tungoe of Durtie	
								- Traces of Pyrtie	
								(RQD=50%)	
		42		5.0		110 0		Gray LIMESTONE With Claystone	
		42	5.0	5.0		112.0		Beds, Thinly to Medium Bedded,	
					·· · · · · ·			Broken to Massive, Hard to Very Hard (Limestone), Soft to Very	
								Soft (Claystone)	
							adan aske halaa an a	_	
								Claystone Beds From 109.8-	
								110.7', 112.3-112.6', 113.4- - 114.2'	
						-		.Beds From 110.7-112.0' And	
								112.6- 113.4'	
				1				.Vertical Fracture From 115.5-	
						1	luu	116. 3'	
							lm		
								(RQD=42%)	
1100		43	8.0	8.0		120 0	120.0		
1188		- 10	- <u></u>				E	Bottom of Boring @ 120.0'	
]								Descent of Dering 6 tro.v.	
					,				
					L				

.

ł

Ami

----- · · ·

SMI	GEO-MECHANICS, INC.
-----	---------------------

.

	207							Surface	
						-	Boring N	o. <u>GB-18</u> Elevation <u>1174.55</u> Sheet No.	1 of 2 sheets
	3					_		Partners, LLC.	<u> </u>
Water I	evel: O-Hr.	4.4	_ 24 Hr	rs. 1	.3.2	_		dows Landing	
	Hammer: Wt.								
Sampler	Hammer: Wt.	. <u>140</u>	_ lbs. D	rop	30 b	11.	Location	South Strabane Twp., PA	
Sampler	Size 2	in. O.D.	Casing S	lize <u>3</u>	Bhan in	n. I.D.	Started	06/04/12 Completed 06/04/12 Proje	ect No. 12022
	t Size					er's Log	□	Drilling Fluid	Water
Orienta	tion	Vertic	al		Geolo	ogist's Lo	yg ⊠	TDW	
ELEVATION	in-situ Tests and Instrumentation	RQD %	RUN-F	·	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (FL)	DESCRIPTION	REMARKS
1174.55					1		E 0.0	TOPSOIL	
4174.02				-	2 3	1.5	0.5	Brown SILTY CLAY, Little Sand, Trace Gravel (Rock Fragments), Medium Stiff to Very Stiff, Damp	
				- - - -	3 4 6	4.5		(Colluvial)	
					6				CL
				-	7 10	7.5			
1165.55				-	6		9.0	Brown CLAYEY GRAVEL (Rock	
				-	8			Fragments), Little Sand, Little	
				F	14	10.5		Silt, Medium Dense, Damp	
				r r					
1								(Residual)	
					10				
					8 31	13.5			
				-					
1159.55				⊢			15.0		
				ļ.	19			Brown CLAYEY SAND (Rock	
					20			Fragments) , Little Gravel,	
				⊢	24	16.5		Little to Trace Silt, Dense to Very Dense, Damp	
				ŀ					
			1	ŀ					
				Ē	13 18			.Rook Fragments Break Down Easily with Hand Pressure	
				F	23	19.5			
				F				_ (Residual)	
				–					
				⊢	25				
				-	40				
		1		ŀ	36	22.5			[
				F		22.5	É		
				Ľ					
				Ļ	16				
	I		<u> </u>		20				<u> </u>

Gmi	GEO-MECHANICS, INC.
-----	---------------------

		N. L.	**	1				Surface
Driller		<u>Matt Hart</u> BK-51		-		o. <u>GB-18</u> Elevation <u>1174.55</u> Sheet P	io. 2 of 2 sheets		
Water T	aval: O.Hr	. <u>4.4</u> 24 Hrs. <u>13.2</u>		-		dows Landing			
	Iammer: Wt.						Mea	dows Langing	
	Hammer: Wt.						Location	South_Strabane Twp., PA	
	Size 2		-					06/04/12 Completed 06/04/12 Pr	ajost No. 12022
	Size				75		-		dWater
Orientat	ion	Vertic	al		Geolo	ogist's Lo	g 🖾	Drilling Flui	
NO	In-situ				SPOON	воттом	i		
ELEVATION	Tesis and	RQD %	RUN	-REC.	BLOWS	DEPTH	DEPTH	DESCRIPTION	REMARKS
ELE	Instrumentation	76			INTERV.	OF SAMPLE	(Ft.)		
1149,55					19	25.5	25.0	Continued From Previous Page	
				i i				3	
1147.55						27.0	27.0	· · · · · · · · · · · · · · · · · · ·	
					50/.4			Gray SILTY GRAVEL (Shale And	
								Limestone Fragments), Some Sand Trace Clay, Very Dense, Dry	1
								(Decomposed Shale And Limeston	ə)
1144.55							30.0		
								Gray LIMESTONE, Thinly Bedded,	Top of Rock @
							<u> </u>	Broken, Hard	30.0'
1440 EF					r		32.0	.Vertical Fracture With Stains	
1142.55								From 30.0-30.3' And 31.0-32.0'	
		0	3.0	2.3		33.0			
					1			(RQD=0%)	니
				1				Gray CLAYSTONE, Indiscernible Bedding, Broken to Blocky, Very	
								Soft	
			ĺ				<u> </u>	Shaly (Near Soil State) From	
								36.0-37.0'	
								.Sparkly Mineral in Rock Мазв (RQD=0%	,
								(1.20-00	
1136.55		0	5.0	5.0		38.0	≣ 38.0		
								Bottom of Boring @ 38.01	
					*				
					· · · ·			-	
					 				
									ļ
								· .	
					,				
							E		1 1

smi	GEO-MECHANICS, INC.
	•

-								Surface		
Driller	- <u></u>	Matt	Har	5	•	-		. <u>GB-19</u> Elevation <u>113</u>		<u>1</u> of <u>1</u> sheets
Drill Rig	·	BI	<u>K-51</u>		<u> </u>	-		Partners, LLC.	·····	
	evel: O-Hr.						Mea	dows Landing	<u> </u>	
Casing E	Iammer: Wt.	1.40	1DS. I	Drop		a,	×	O		
-	Hammer: Wt.							South Strabane Twp.,		
	Size <u>2</u>						-	06/04/12 Completed 06		
	Size ion				Cool	er's Log	g 🖾	JMA	Drilling Flaid	Water
					1		<u> </u>			······································
ELEVATION	In-situ Tests and Instrumentation	RQD %	RUN	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Fl.)	DESCRIPTION		REMARKS
1132.52 1132.02					1		<u>t 0.0</u>	TOPSOIL		
					1		<u> </u>	Gray SILTY CLAY, Litt		.Moved Boring
					1	1.5		Trace Gravel, Very So	ft, Moist	5' Laterally
								(Colluvial)	And 2.5± Feet Lower in Elevation
1129.52							3.0			ATOVACION
					11 15 18	4.5		Brown SILTY CLAY, Som Trace Gravel (Rock Fr Hard, Damp		
								-		
								(Residual	1	
1126.52					15	ļ	6.0			
					<u>15</u> 22			Dark Gray CLAYEY SAND Gravel (Rock Fragment		
					50/.2	7.2		Dense, Damp	s), tery	
1123.52							9.0	(Decomposed Carbonac	eous Shale)	
					34	9.6		Black COAL With Thin	Shale Seams	.Wet @ 9.0'
					50/.1			_		
					· .					
1			,		42					
					50/.2	12.7				
			i							
1117.52			1				<u>15.0</u>			
1117.12					50/.4	15.4	15.4	Decomposed SILTSTONE		Top of Rock (
								Gray SILTSTONE Interb		15.4'
Î I							E-	SILTY SHALE, Thinly L Thickly Laminated, Ve		Como Brooka
								Blocky, Slightly Weat		Parallel With
		19	2.6	2.4		18.0		Medium Hard	,	Bedding
							<u>E</u>			Planes
									(RQD=40%)	
								_		
1109.52		50	5.0	4.8		23.0	23.0			
		<u> </u>						Bottom of Boring	0 23.01	<u> </u>
								23000m OL DOLLING		
1										

<u>Gmi</u>	GEO-MECHANICS, INC.
------------	---------------------

Thefiles	Math	Vont				N. J. N	Surface					
	Matt Hart BK-51					Boring No. <u>GB-20</u> Elevation <u>1124.92</u> Sheet No. <u>1</u> of <u>1</u> s For KGA Partners, LLC.						
Water Level: O-Hr.	36	24 10-	,	6.9	-							
Casing Hammer: Wt.		 	»	0.9	-	ING C	dows Landing	·				
Sampler Hammer: Wt.						Looption	South Strabane Twp., PA					
Sampler Size 2							<u>06/05/12</u> Completed <u>06/05/12</u> Project	4N- 10000				
a		-				-						
Orientation	Vertic	al		Geola	noist's Log	 • 🛛	Drilling Fluid	Water				
Z			<u> </u>									
Z In-situ F Tests A and II Instrumentation	RQD			SPOON BLOWS	BOTTOM DEPTH	DEPTH						
and instrumentation	%	RUN-R	(EC.		OF SAMPLE	(FL)	DESCRIPTION	REMARKS				
1124.92				INTERV.	OANIFLE							
1124.42				1		<u></u> ≣ 0.0/ ≣ 0.5/	TOPSOIL					
				4	1.5	±/	Brown SILTY CLAY, Some Sand, Trace Gravel (Rock Fragments),					
1122,92					1.5	2.0	Stiff, Moist					
		Í					¬					
							(Colluvial)	1				
				3	-		Gray-Brown SILTY CLAY, Some Sand,					
				4			Little Gravel (Rock Fragments),					
				6	4.5		Stiff, Moist					
							_					
							(Residual)					
						<u> </u>						
1117.00				<u>4</u> 6		<u> </u>						
1117.92				12	7.5		Gray-Brown CLAYEY SAND, Little to					
					7.5		Some Gravel (Rock Fragments),					
							Some Silt, Dense to Very Dense,					
								SC				
				24								
				37		=	_					
				50/.4	10.4		(Decomposed Sandy Shale)	Becomes				
		i.				Ē	(bindy bindle)	Increasing				
						<u> </u>	1	Coarser With				
	İ			42		<u> </u>		Depth				
				50/.2	12.7			1				
				007.2	12.7	<u> </u>						
						Ξ.						
1109.52				50/.4	15.4	15.4	-					
						<u> </u>	Dark Gray to Black Carbonaceous					
						<u> </u>	CLAYSHALE, Thickly Laminated to Thinly Bedded, Slightly to					
						<u> </u>	Moderately Weathered, Broken o					
	55	2.6	2.2		18.0	<u> </u>	Blocky, Soft					
•			£ £									
							(RQD=47%)	.Breaks Along				
			1					Bedding Planes				
1104.92						20.0		Top of Rock 0				
							Gray to Dark Gray With Black	15.4'				
						Ē	Streaks, Argillaceous LIMESTONE,					
						<u> </u>	Medium Bedded, Broken to Blocky,					
							Slightly Weathered, Medium Hard to Hard					
	42	5.0	<u>ج</u>			<u>≣_</u>						
1101.92	44	3.0	5.0		43.0	<u></u> 23.0	(RQD=44%)					
						<u> </u>	Bottom of Boring @ 23.0'					
						<u> </u>						
harmon and the second s	· ·											

GINI) GEO	-MECHA	NICS, INC	1 •	٦	EST	BORING	Surface	ORD			
Driller	Matt	: Hart		_	Boring N	o. GB-21		1141.17 Sh	eet No.	1 of 1	sheets
Drill Rig Water Level: O-Hr.	В	K-51		_		Partners,					
Water Level: O-Hr.	4.8	24 Hrs	9.2	_	Mea	dows Landi	ng				
Casing Hammer: W	t	lbs. Drop	i	31.							
Sampler Hammer: V											
Sampler Size 2	_ in. O.D.	Casing Size	<u> </u>	n. I.D.	Started	06/06/12	Completed	06/06/12	Project	No. <u>1202</u>	2
Core Bit Size	NQ2	2	Drill	er's Log	□			Drilling	Fluid	Water	
Orlentation	Verti	cal	Geol	ogist's Lo	g 🖾	JMA		-			
V in-situ E Tests and Instrumentatio	RQD %	RUN-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Fl.)		DESCRIP	TION		REMARKS	
1141.17 1140.67			1		<u> </u>	TOPSOIL					
			1		0.5		-	CLAY, Some S			
			4	1.5			•	k Fragments)			
			ļ	4		Medium St	lii to H	ard, Damp			
				1.5							
				ļ	2		(Residu	a])			

Drill Rig	Drill Rig BK-51 For KGA Partners, LLC.								
	evel: O-Hr.				9.2			dows Landing	
Casing F	fammer: Wt.		lbs, I	Drop _	i	i).			
Sampler	Hammer: Wt.	140	_ lbs, I	Drop _	<u> 30 i</u>	n.	Location	South Strabane Twp., PA	
Sampler	Size	in. O.D.	Casing	Size	<u>3¼"</u> i	ect No. <u>12022</u>			
Core Bit	Size	NQ2			Drilla	er's Log	<u> </u>	Drilling Fluid	Water
Orlentat	ion	Vertic	al		Geolo	oglst's Lo	g 🖾	JMA	
ELEVATION	in-situ Tests and Instrumentation	RQD %	RUN	REC.	SPOON BLOWS	BOTTOM DEPTH OF SAMPLE	DEPTH (Fl.)	DESCRIPTION	REMARKS
1141,17				r	1		E 0.0	TOPSOIL	
1140.67					1		0.5	Brown-Gray SILTY CLAY, Some Sand,	
					4	1.5		Trace Gravel (Rock Fragments),	
								Medium Stiff to Hard, Damp	
								(Residual)	
					8			,	
					25	4.5			
								-	
1									
1134.67					6		≡ 6.5		
					8			Dark Gray to Black SILTY SAND,	
					12	7.5		Trace Gravel, Little Clay, Dense,	
							Ĕ	Damp	
								(Decomposed Carbonaceous Shale	
1131.67					13		<u>≕</u> ≡ 9.5	And Bony Coal)	
1121.07					18			Brown-Gray SILTY SAND, Little to	
					45	10.5		Some Gravel (Sandstone	
								Fragments), Trace Clay, Very	
								Dense, Damp	
								(Residual)	
					50/.3	12.3		(Residual)	
1126.67							<u>≕</u> ≡ 14.5		
1120.07					· ·		<u> </u>	Light Gray SANDSTONE, Medium	Top of Rock @
1125.87					<u>}</u>		15.3	Bedded, Blocky, Hard	14.5'
								(RQD=52%)	
								Black BONY COAL	
		14	3.0	1.7		17.5		(RQD=0%)	
1122,87							<u>≣ 10,3</u>		
								Gray SILTSTONE, Very Thinly	1
	1			ĺ			Ē	Bedded, Blocky to Massive With	
								Very Broken Seams, Moderately to	
								 Highly Weathered, Soft to Medium Hard 	
								nard	
								(RQD=63%)	
1118.67		53	5.0	4.8	ļ	22.5	22.5		ļ
							Ē	Bottom of Boring @ 22.5'	
							Ēi		
الــــــــــــــــــــــــــــــــــــ				·	r	L	r .		

GEO-N	AECHA	NICS,	INC.		T	EST	BORING		ORD	. •	
Driller	Matt	Har	Ł			Boring N	o. GB-22	Surface Elevation	1154.25	Sheet No.	1_ of2_ sheet
Drill Rig					-		Partners,				VI uncer
Water Level: O-Hr.			rs.Bac	kfille	d		dows Landi				
Casing Hammer: Wt.		lbs. J	Drop	j.	n.				_		
Sampler Hammer: Wt.	140	_ lbs.]	Drop _	<u> 30 i</u> i	n.	Location	South Stra	abane Tw	p., PA		
Sampler Size	in. O.D.	Casing	Size	<u>3'4"</u> i	n, 1.D.	Started	06/06/12	Completed	06/06/1	2_ Proje	ct No. 12022
Core Bit Size	NQ2	!		Drille	er's Log [Water
Orientation	Vertic	al		Geole	glst's Lo	g 🖾	JMA				
C In-situ FF Tests and Instrumentation	RQD %		REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)		DESCRIP	TION		REMARKS
1154.25 1153.75				1		<u> </u>	TOPSOIL				
				1		0.5			CLAY, Some		
				3	1.5				avel (Rock		
				┣───			Stiff, Da		m Stiff to	very	
							DCTTT, DO		130		
				4							
				6				(Collu	vial)		
				7	4.5						
							_				
				6							
				8 11	7.5						
				<u>**</u>							
				5							
				5							
				6	10.5						CL
				<u> </u>							
				3							
				3							
				4	13.5						Moist @ 12.5'
1139.25						15.0					
				31			Gray SIL	Y SAND,	Some Grave	.	
				36	16.5		(Sandstor Clay, Ver		ents), Litt	:Te	
				42	10.0	ulu	Oldy, fai	y benae,	Danp		:
							(De	composed	l Sandstone)	
				50/.2	18.2						
1134.25						20.0					
									SILTY SHA		Top of Rock @ 20.0'
									to Claysha Laminated		
									Slightly	-, ,	
									o Medium B	lard	Core Breakage
	14	3.0	3.0		23.0				1 .		Along Bedding Planes
	T								(RC)D=0%)	
			. <u></u>			=			• • • = = • • • •		

!

ł

t

÷

;

smi	GEO-MECHANICS, INC.
-----	---------------------

l

Driller		M=++	. Har	+			Paulag N	Surface
	 {					-		o. <u>GB-22</u> Elevation <u>1154.25</u> Sheet No. <u>2</u> of <u>2</u> sheet Partners, LLC.
Water L	evel: O-Hr.	4.9	24 H	Irs,Bac	kfille	- ad		dows Landing
Casing H	Iammer: Wt.			Drop	i	n.		
	Hammer: Wt						Location	South Strabane Twp., PA
Sampler	Size 2	In. O.D.	Casing	Size	3 ¹ 4" i	n. I.D.		06/06/12 Completed 06/06/12 Project No. 12022
Core Bit	Size	NQ2	2		Drill	er's Log		
Orientat	ion	Vertic	cal	<u> </u>	Geol	ogist's Lo	g 🛛	JMA Druing Huid <u>Water</u>
ELEVATION	in-situ				SPOON	воттом		
LA1	Tests and	RQD %	RUN	-REC.	BLOWS	DEPTH OF	DEPTH (Ft.)	DESCRIPTION REMARKS
Ere	Instrumentation		1		INTERV,	SAMPLE	C 17	
1103 85							10 0 K	
1127.75							26.5	Plack Perry (ONF, Many Pushes
								Black Bony COAL, Vary Broken, Soft
1126.25		0	5.0	5.0	·	28.0	28.0	
-								(RQD=0%)
								Gray SILTSTONE
								-
								.9" Clay Shale Seam
								(RQD=0%)
								(122-08)
1121.25		0	5.0	5.0		33.0	33.0	
								Gray SILTSTONE, Medium Bedded,
								Blocky to Massive, Slightly Weathered, Medium Hard
1119.25		75	2.0	2.0		35.0	35.0	Weathered, Moutom Hatu
								(RQD=75%)
								Bottom of Boring @ 35.0'
							nl	
Į								
í I								
(I								
								_
			[-	
ļl								
1 1		[
							<u> </u>	
Į								
	1					man h	-	

<u>Emi</u>	GEO-MECHANICS, INC.
------------	---------------------

		NF = 4 - 4	TT	L_				~ ~ ~ ~	Surface	4410 00 m	
Delli Die		Matt	<u>Har</u> i 7-51	<u> </u>		-		0. <u>GB-23</u> Partners,		1173.23 Sheet No.	1 of 2 sheets
Water L	evel: O-Hr	5.7	24 भ	rs.Cav	ed@16.	3		dows Landi:			·····
	lammer: Wt.								<u></u>	······································	
	Hammer: Wt.						Location	South Stra	abane Tw	р., PA	
-	Size 2		_							06/06/12 Proj	ect No. 12022
Core Bit	Size	NQ2			Drill	er's Log {		· · · · · · · · · · · · · · · · · · ·		Drilling Finid	Water
Orientat	ion	Vertic	al		Geol	ogist's Lo	g 🖾	TDW			
	in-situ				SPOON	воттом					
<u>ei evation</u>	Tests and	RQD %	RUN-	REC.	BLOWS	DEPTH OF	DEPTH (Fl.)		DESCRIP	TION	REMARKS
	Instrumentation				INTERV.	SAMPLE					
1173.23 1172.73					1		0.0				
					2	1.5		BTOMII GTH		Little Sand, ravel (Rock	1
1					<u> </u>	1.0				l Pieces), Soft	
								to Stiff,			
					3		mpm				
					4		<u> </u>				
					5	4.5			(Coll	uvial)	
						4.5		-			CL
					7						
					<u> </u>						
					B	7.5					
1163.73					8		9.5				
					11				-	SAND, Some	1
					19	10.5				ments), Little	
								Silt, Den	ise to ve	ry Dense, Damp	
					20						
					21			(Dec	composed	Sandy Shale)	
					38	13.5					-
						13,5					
					38			_			
1157.53					50/.2	15.7	15.7				
										SANDSTONE	Top of Rock @ 15.7'
										to Thinly	1.0.7
										Massive,	
		36	2.3	1.9		18.0		Slightly	Weathere	d, Medium Hard	
				ſ	<u></u>					(RQD=45%)	
								-			
						18.0 23.0					
											Į į
											1
		55	Б Л			00 0					
	1	55	5.0	4.8		23.0					
						i					

GNI	GEO-MECHANICS, INC
-----	--------------------

Drifter	h*	Matt	Har	+			Boring M	CB-23	Surface	1173 22 Sheet	No. 2 of 2 sheets
	3					-		Partners,		<u></u> 50601	No. <u>2</u> 01 <u>2</u> sheets
Water L	evel: O-Hr.	5.7	24 H	rs.Cav	ed@16.	.3		dows Landis			
	lammer: Wt.								-3.		
	Hammer: Wt.						Location	South Stra	bane Tw	p., PA	
	Size										roject No. <u>12022</u>
	Size				Drill	er's Log {			_	· · · · · · · · · · · · · · · · · · ·	id Water
Orientat	ion	Vertic	al		Geol	ogist's Lo		TDW		_	
NO	in-situ				SPOON	BOTTOM					
ELEVATION	Tesis and	RQD	RUN	REC.	BLOWS	DEPTH OF	DEPTH (Ft.)		DESCRIP	TION	REMARKS
	Instrumentation				INTERV.	SAMPLE	(, .,				
1140,23							25.0	Continued	From Pr	evious Page	
1											
1145,23		40	5.0	5.0		28.0	28.0				
								Light Gray	y CLAYSH	ALE/CLAYSTONE,	
								Indiscern	ible Bed	ding, Blocky t	:0
								Massive,	Slightly	Weathered, So)ft
							Ē	-		(ROD=66	59.1
1 1					·					(220-00	/01
1141,73							31.5				
								Grav Argi	llaceous	LIMESTONE,	Í
						1				, Medium Bedde	ad,
1140,23		70	5.0	5.0			33.0	Hard			
							, mpin	Gray Calc		(RQD=66%	<u>s)</u>
							<u> </u>			ding, Blocky t	:0
					• • •					Weathered, Sc	
					·			-			
							Ē.			(RQD=38	38)
		45	5.0	5.0		38.0					
			0.0	3.0		38.0					
					·						
1											
1133,23		20	2.0	2.0		40.0	<u>40.0</u>				
								Bott	on of Bo	ring @ 40.0'	
							Ē				
				l .							
						İ					
	l										
							Ē				
							<u> </u>				
							Ē				
1											
					·····		E_]				
							Ē				
							Ē-				

smi,	GEO-MECHANICS, INC.
------	---------------------

									Surface		
Driller		Matt	Har	t		-			Elevation 1148.84 Si	heet No.	<u>1</u> of <u>2</u> sheets
Drill Rig		B	<u>к-51</u>			-			LLC.		
Water Level: (Mea	dows Landi	ng		
Casing Hamme									• • • • • • • • • • • • • • • • • • •		
Sampler Hamn									bane Twp., PA		
Sampler Size			Casing	Size	<u>נ "יגייב</u>	6, J.D.			Completed <u>06/06/12</u>		
Core Bit Size		NU2 Zombał	: 1		Drill Geol	er's Log ogist's Lo		TDW	Drilling	g Fluid	Water
	<u> </u>	ALCIC			1	I I I I I I I I I I I I I I I I I I I	8 I		· · · · · · · · · · · · · · · · · · ·	T	
E Ta A a W Instrum	-silu ests ind nentation	RQD %	RUN	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)		DESCRIPTION		REMARKS
1148.84 1148.34					1 2 3 5 4 4 6 10 8	1.5 4.5 7.5		Brown-Gray Sand, Tray	y SILTY CLAY, Littl ce Gravel, Trace Co , Soft to Stiff, Mo (Colluvial)	al	CL Tried to Push Shelby Tube @ 7.0', Material Too Stiff to Sample Shelby Tube
1136.84					5 4 	10.5		Crou STIM	Y SAND, Little Grav		Sample From 9.0-10.5' (Rec. 0.8')
					8	13.5		(Rock Fra	gments), Little Grav Gments), Little Cla Medium Dense, Damp		
1130.84						16.5	mfein	-	(Residual)		
1130.34								SANDSTONE Slightly Gray SAND CLAYSHALE Thinly Be	y, Medium-Grained , Medium Bedded, Bl Weathered, Hard (RQD= Y Grading Into , Thickly Laminated dded, Very Broken t oderately Weathered	=83%) 1 to	Top of Rock (18.0'
1124.84		35	5.0	3.6		23.0	24.0	See Next)=30%)	

GM	GEO-N	AECHA	NICS	, INC.		٦	EST	BORING RECORD	
Driller		Matt	: Har	t			Boring N	Surface oGB-24 Elevation1148.84_ Sheet No2_ of2_ s	heets
Drill Rig	•	<u> </u>	<u>K-51</u>			-	•	Partners, LLC.	
Water La	evel: O-Hr.	19.1	24 B	lirs		-	Меа	dows Landing	
	lammer: Wt.							·	<u>-</u>
	Hammer: Wt.							South Strabane Twp., PA	
	Size <u>2</u>							<u>06/05/12</u> Completed <u>06/06/12</u> Project No. <u>12022</u>	
Orientati	Size	Vertic	a.L		Geol	cr's Log noist's Lo	u <u>.</u>	Drilling Fluid Water	
					SPOON	r			
ELEVATION	in-situ Tests	RQD	RUN	-REC.	BLOWS	BOTTOM DEPTH	DEPTH	DESCRIPTION REMARKS	
	and Instrumentation	%			INTERV.	OF SAMPLE	(Ft.)		
1123.34					ļ		≡ 25.5	Dark Gray Carbonaceous CLAYSHALE,	-
						1		Thickly Laminated, Very Broken,	
1122.34				l		}	26.5	Soft (RQD=0%)	
1				i	ļ	ł		Black BONY COAL, Very Broken,	
		8	5.0	5.0		28.0		Soft	
								(RQD=0%)	
						1		Gray SILTY SHALE With Carbonaceous Streaks, Thinly to	
]		Thickly Laminated, Broken,	
						-		Slightly Weathered, Medium Hard	
1118.34							30,5		
								(RQD=5%)	
				ļ		1		Black BONY COAL With SHALY Seams,	
]		Very Broken to Broken, Soft	i
		15	5.0	5.0		33.0		(RQD=0%)	
1115.34						ļ	33.5		
								Gray SILTSTONE With SILTY SHALE Interbeds, Thickly Laminated to	
					· · · ·	1 -		Very Thinly Bedded, Very Broken	
]		to Massive, Slightly Weathered,	1
								Medium Hard	
				Į					
		60	5.0	5.0	-	38.0			
1 1							Ē	(RQD=56%)	
]		(x ,	
							<u> </u>	-	
						1			
						1		, c	
					_				
1105.84		47	5.0	5.0		43.0	43.0		
						i		Bottom of Boring @ 43.0"	
						1		· · ·	
					[
								F I	
					L		Ë		
				[1			
				1		1			
						1			
1									
						ł			
				1	1	1	E		

GM	GEO-N	AECHA	NICS, INC]	FEST	BORING RECORD	
Driller		Matt	Hart			Boring N	Surface Surface <u>GB-25</u> Elevation <u>1170.55</u> Sheet No.	1 of 2 sheets
Drill Rig		Bŀ	(-51		-		Partners, LLC.	
	evel: O-Hr		_		-	Məa	dows Landing	
Casing H	lammer: Wt.	140	_ lbs, Drop _	<u> </u>	n.	T		
Commission	61ma 0	J. OD	0t 0t	D1/10 1	TD	0 , , , ,	South Strabane Twp., PA 06/06/12 Completed 06/06/12 Project	
Core Bit	Size	NO2	Cuand Dive -	 Drili	er's Log		<u> </u>	Water
Orientat	ion	Vertic	al	Geol	ogist's Lo	- <u>-</u> ≥ g	D6/06/12 Completed D6/06/12 Proje Drilling Fluid TDW	
ELEVATION	in-situ Tests and Instrumentation	RQD %	RUN-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF	DEPTH (Fl.)	DESCRIPTION	REMARKS
1170.55 170.05				INTERV. 1 2 2 5 8 9 9 4 6 7 7 7 12 25 11 7 7 4 11 7 7 4 11 7 7 4 11 50 33 - 25 36 27 - 39	1.5 4.5 7.5		TOPSOIL Gray SILTY CLAY, Trace Sand, Trace Gravel (Rock Fragments), Medium Stiff to Very Stiff, Damp (Residual) Brown CLAYEY GRAVEL (Rock Fragments), Some Sand, Some Silt, Medium Dense to Very Dense, Damp (Decomposed Siltstone)	GC
				27	22.5			

; .

.

.

Dudlan		Moto	Uam	4-			Daning N	CD-25	Surface	1170 EE (1	0	0
Drill Rie	;	B	<u>. паг</u> К–51	La		-		Partners,		1170.55 Sheet No	· 01 _	Z sneets
Water L	evel: O-Hr.	6.2	24 H	írs.	9.2	-		dows Landin		· · · · ·		
	lammer: Wt.					- n.						
	Hammer: Wt.						Location	South Stra	bane Tw	rp., PA		
Sampler	Size 2	in. O.D.	Casing	Size	<u>3년</u> " i	u. I.D.					ect No. 1	2022
Core Bit	Size	NQ2	2	_	Drill	er's Log	□			Drilling Fluid	Wat	er
Oriental	ion	Vertic	<u>al</u>	,	Geol	ogist's Lo	⊔ g⊠	TDW				
NOI	in-situ				SPOON	воттом						
ELEVATION	Tests and	RQD %	RUN	-REC.	BLOWS	DEPTH	DEPTH (Ft.)		DESCRIP	TION	REMA	RKS
	Instrumentation				INTERV.							
1145.55 1145.05					50/.1	25.5	25.0			evious Page	Top of	Rock 0
						-		Gray Fine SANDY SHA		SANDSTONE With	25.1	
										Foot, Thinly		
		24	2,4	2.0		27,5		Laminated	to Thin	ly Bedded,		
										d, Very Broken		
]		CO MASSIV	e, meaiu	m Hard to Hard		
						4	Ē					
										(RQD=27%)		
				 		1		-				
				1								
		27	5.0	5.0		32.5	32.5					
1138.05		41	5.0	5.0		32.5	<u> </u>	Bott	om of Bo	ring @ 32.5;		
								2022		1111g e 52,5		
				1				-				
	:											
						1					ļ	
						ł						
-												
						1						
							Ē					
						į –						
]						
							Ē					
							Ē	-				
											1	
						1						
						l	E					
						l						
					 	1						
						1						
						1						
						1						

GMI	GEO-MECHANICS, INC.
-----	---------------------

Driller		Matt	Hart			Raring N	0 P-3	Surface Elevation	1114.6 Sheet	No 1 of	1 albanta
Drill Rig	ş	B	K-51				Partners,		TTTA'O Sucer	140 01	succts
	evel: O-Hr.						dows Landir		•••		
	ammer: Wt.							- 9			
	Hammer: Wt.					Location	South Stra	bane Two	., PA		
				3 ¹ /1" in. I.					04/17/12 P	roject No.	12022
	Size									id N	
Orlentat	tion	Vertic	al	Geologis	t's Log	⊠	JMA				
	in-situ			1	ттом						
ELEVATION	Tests	RQD %	RUN-REC.	BLOWS	ЕРТН	DEPTH		DESCRIPT	10 N	REA	ARKS
E	and Instrumentation	70		INTERV. SA	of Mple	(Ft.)				1140	
1114.6				1		0.0	TOPSOIL				
7774'7				3		0.5		V CLAYEY	SAND, Some		
				4 1	5]	Silt, Trad			1	
							Fragments)		to Medium		
							Dense, Dan	mp			
				5	Ē			(Residu	al)		
				<u>6</u> 8 4				•••	•		
					.5	-					
							_				
						-					
				9							
				10							
				11 7	.5					-	
1106.6						8.0					
					2.5				RAVEL, Little		
				50/.4 9	.4		Sand, Trac	ce Clay,	Very Dense, D	ry	
				507.4		-					
							(1	Decompose	d Sandstone)		
					Ē						
				11							
				17 1:	3.3 Ē						
			l l	50/.3	3.3						
				 		-					
1099.2				50/.4 1	5.4	15.4	_				
							Botto	om of Bor	ing @ 15.4'		
1											
]								-			
						-					
				┝───┨	Ē		• •				
						-					
				 − ·−− 			-				
						- 1					
					Ē						
					E						
						1					
				 							
				├ ──┤		-					
	1				E	÷				1	

Gmi	GEO-MECHANICS, INC.
------------	---------------------

The state of the s		1 a a b b	TT 4-				Surface	
Driller		Matt	Hart E1		-		$\frac{P-4}{P-4} = \frac{1112.6}{P-4} $ Sheet No.	_1_ of _1_ sheet
Wates T	evel: O-Hr.	Dray	24 Um		-		Partners, LLC.	
	fammer: Wt.					Mea	dows Landing	· · · · · · · · · · · · · · · · · · ·
	Hammer: Wt.					T agotion	South Strabane Twp., PA	
	Size 2						<u>04/17/12</u> Completed 04/17/12 Proje	
	Size							$\frac{12022}{N/A}$
Orientat	ion	Vertic	al	Geol	n s Log i neist's Lo		Drilling Fluid	N/A
	• • • •		· · · · · · · · · · · · · · · · · · ·					
ELEVATION	In-situ Tests and Instrumentation	RQD %	RUN-REC.	SPOON BLOWS	BOTTOM DEPTH OF \$AMPLE	DEPTH (Fl.)	DESCRIPTION	REMARKS
1112.6 1112.1				1		≣ 0.0] ≣ 0.5∣		
				0			Drown gray profit offert	
1				3	1.5		Sand, Trace Gravel (Rock Fragments), Very Soft to Very	
							Stiff, Damp to Moist	
				4				
				5			(Residual)	
			[8	4.5			
							_	
				10				
				10				
				14	7.5			
}							i i i i i i i i i i i i i i i i i i i	
				6		10.0		
1102.6				8	10.5			
				20	10.0		Brownish Gray SILTY GRAVEL, Some Sand, Little Clay, Dense to Very	
							Dense, Dry	
							• • •	
				19				
				35	13 4		(Decomposed Sandstone)	
				50/.4	13.4			
						<u> </u>		
1097.5				507.1	1 1 1 1		Bottom of Boring @ 15.1'	
							Boccom or Boring (19.1'	
						Ē		
				·				
							-	
							–	
		Í						
								
				 				
						Ē		

<u>Emi</u>	GEO-MECHANICS, INC
------------	--------------------

									Sarface		
Driller		Matt	: Har	t		_	Boring N	o. <u>P-7</u>	Elevation _	1115.8 Sheet No.	<u>1</u> of <u>1</u> sheets
Drill Rig	g	B	<u>K-51</u>			-		Partners,			
Water I	evel: O-Hr.	2.7	24 H	lrs	5,9	-	Maa	dows Landin	ng		
Casing l	Hammer: Wt.		Ibs.]	Drop _	i:	n.	<u> </u>				· · ·
Sampler	Hammer: Wt.	_140	lbs.]	Drop _	<u> 30 i</u> :	n.	Location	South Stra	abane Tw	D. , PA	
Sampler	· Size <u>2</u>	in. O.D.	Casing				Started	06/18/12	Completed	06/18/12 Proje	et No. 12022
Core Bi	t Size	NQ2	2		Drille	ar's Log [⊐			Drilling Fluid	Water
Orienta	tion	Vertic	<u>cal</u>		Geole	gist's Lo	g 🖾	JMA		_	
NO	in-situ		<u> </u>		SPOON	BOTTOM					
ELEVATION	Tests and Instrumentation	RQD %	RUN	-REC.	BLOWS	DEPTH OF SAMPLE	DEPTH (Ft.)		DESCRIPT	10N	REMARKS
1115.0 1115.3	Į				1		<u> </u>	TOPSOIL			
					3		<u> </u>	BTOMU-GTS		I SILTY CLAY,	
			l		7	1.5				and, Trace Rock	
			i							o Very Stiff,	
								Damp to M	OIST		
				·							
1					10		upu				
1		İ			9	⊿ =	<u> </u>				
				1	17	4,5	E- 1		(Resid	dual)	
	1					4.5					
	1										
ł					5		<u> </u>				
		ļ			7						
					10	7.5					
1											
[1	· · ·						
				1	5						
				-	8						
					11	10.5		-			
1											
1103.8							12.0				
					50/.3	12.3	Ш	Brown-Gra	Y CLAYEY	SAND, Little	
										little Silt,	
								Very Dens	e, Damp		
1				ł	ļ		Ē	1	0.0000000000000000000000000000000000000	j Chalal	
									ecomposed	i snatej	
1100 4						42.3	= 15.4	_			
1100.4					50/.4	13.4		Creary Dir-	-Crossed	GANDORONIN 172 1.1	Top of Rock 8
1							Ē			SANDSTONE With beds, Thinly	15.4'
1					⊢					en to Blocky,	
1										: 1 Foot, Medium	
		26	2.6	2.4		18.0		Hard Belo			
		~~		<u>-</u>	┨────		Ē				
1					 					/ * * * * * *	
1					 		E			(RQD=24%)	
1											
1								L-4			
1094.8		22	3.0	3.0	<u> </u>	21.0	21.0				
							E	Bott	om of Bor	ring 0 21.0'	
1											
1											
1											
L			[l	I		E				

Gmi	GEO-MECHANICS, INC.
-----	---------------------

								Surface	
						•	Boring N	oP-8 Elevation1118.2 Sheet No	1 of 1 sheets
Drill Rig	i	B	<u> </u>			-		Partners, LLC.	
	evel: O-Hr.					-	Mea	dows Landing	
Casing E	fammer: Wt.	140	_ Ibs. J	Drop	îi	n.			
	Hammer; Wt.			~	01.0			South Strabane Twp., PA	10000
	Size Size			Size	<u>54</u> 1 Deille	u LD. Mic Log		06/18/12 Completed 06/18/12 Project	
Orientat	ion `	Vertic	al		<u>374''</u> in Drille Geole	ogist's Log	 。 🖂	Drilling Fluid	water
					i				
ELEVATION	in-silu Tests and Instrumentation	RQD %	RUN-	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	Depth (Fl.)	DESCRIPTION	REMARKS
1118.2 1117.7					2		<u> </u>		
		-			2		<u> </u>	Brown SILFI CLAI, LITTIG Sand,	
					4	1.5		Trace Rock Fragments, Medium	
								Stiff to Stiff, Damp	
					{				
					5				
					8				
					10	4.5			
								_	
					6		<u> </u>		
					7				
					7	7.5			
						1			
1109.2							<u> </u>		1
1			1		15			Gray-Brown SILTY CLAY, Trace	
					14		F	Sand, Very Stiff, Damp	
					15	10.5		(Residual)	
								(,	
1106.2							12.0		
					50/.3	12.3		Grayish-Brown CLAYEY SAND, Little	
								Shale Fragments, Little Silt,	
								Very Deńse, Damp	
							Ē	(Decomposed Shale)	ĺ
					·			(Decomposed Share)	
1102.8					50/.4	15.4	<u>-15.4</u>	-	
									Top of Rock 8
							Ē	SANDY SHALE, Thinly Bedded	15.4'
			•					Interbeds, Broken to Blocky,	
								Medium Hard	
		19	2.6	2.6		18.0	Ē		1
								(RQD=40%)	
					·				
1					[ļ	
								-	
1097.2		58	3.0	3.0		21.0	21.0		
								Bottom of Boring @ 21.0'	
							E		
				1					
									ł
									1
							21.0		

APPENDIX A-2:

Relevant ACA Test Boring Records 2006 and 2011 Geotechnical Investigations B-1 through B-6 (2011) B-2, B-4, B-5, B-6 (2006)

Project Client: Locatio	t No: P060231x10 L: Route 19 Property KGA Partners on: Washington, PA UBSURFACE PROFILE		Eng	1	SAMPLE	nc.		Borehole # Elevation: 1315' +/- Engineer/Geologis		
Serind Serind		Depth/Elev.	Nember	Type	Sample Dept:	Blows/fl	Recovery	N Value blows/ft 10 30 50	Water Level	Remarks
0	Ground Sunface			İ					· · · ·	
2	Stiff brown sEly CLAY with trace rock (regments, sand, and organics (CL)	0.0	S-1	55	0.0 - 1 5	2 5 0	1.5	•		Movist
3	Very stiff brown clayey StLT with rock fragments (ML)	2.5	8.2	\$8	3.0 - 4.5	6 6 14	1.1	4		Dry
6	Completely to highly weathered brown SANDSTONE	5.0	S-3	SS	6.0 - 7.5	18 21 24	1.5			Đry
8 9 10 10 10	Completely weathered brown silty SHALE Completely weathered	8.0	S-4	SS	9.0 - 10.5	7 9 28	1.5			Dry
11 12 13 13	Completely weathered	12.5	S-5	SS	12.0 - 13.5	16 16 11	1,5			Dry
14	Completely to highly weathered gray	15.5	S-6	SS	15.0 - 16.5	21 36 41	1.5			Ũrγ
17	Completely to highly Wathered brown sandy SHALE	17.5	S-7	S S	16.0 - 18.8 .:	47 50-3*	0.B			Dry
Doll M€	By: Test Boring Services, Inc. athod: Hollow Stem Auger tie: September 25, 2005		-40 V Pittst	Veste burgh	eering, Inc. m Avenue , PA 15202 2) 761-1990			Hole Size: 5" Weather: Schny Sheet: 1 of 2	- 70's	

-

Project: F Client: KC Location:	o: P060231x10 Route 19 Proporty DA Pariners Washington, PA		Enç	1	cring, tr	ic.		Borehole #: B-3 Elevation: 1315' +/- Engineer/Geologist: J. Mastren W				
SUB Symbol Symbol	Description	Dapt:/2/ov.	Number	Type	SAMPLE Pldmes	Blowsfil	Recevery	N-Value blows/ft 20 30 50	Water Lovo"	Remarks		
21		21.7	S-8	SS	21.0 - 21.7	31 50-21	39			Ðry		
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40								·				
Drilled By. Drill Metho	Drilled By, Test Boring Services, Inc. Drill Method: Hollow Stem Auger				eering, Inc. m Avenue PA 15202 2) 761-1990	Hole Size: 5" Weather: Sunny - 70's Sheet: 2 of 2						

• •

Clie	ent: K	Roule 18 Property GA Parimers ; Washington, PA		Ēn		ering, I	ne.	Borehole #: B-4 Elevation: 1220 +/- Engineer/Geologist: J. Mastren-W					
Capth	SUrbol	Description	Jephiliev.	Number	Type	SAMPLE	Biowalt	Recovery	N-Valvo blows/R 10 30 50	Viator Lovai	Remarks		
0 1 2		Ground Surface Topood • 4" Stiff brown silly CLAY with rock Impriceds (CL)	0.0	Ş.1	SS	0.0 • 1.5	256	1.5	u		Madest		
5 & 0 Juniterio		Completely weathered COAL	3.0	S-2	SS	30-45	7 6 0	1.5			fvfoist		
		Completely to highly weathened grayish-brown sandy SHALE		\$-3	55	6.0 - 7.5	\$) 12 17	1,2			Слу		
9 10 11 11				5-4	55	9,0 - 10.5	4 5 13	1.4			Dry		
12 13 13		Highly weathered gray sandy SHALE	11.5	S-5	ŞS	12.Q · 13.1	24 37 50-1"	1,1		•	Dry		
15		End of Fast Boang	15.6	8-6	<u>8</u> 8	15.0 - 15.1	50-1"	0.0			Dry		
17- 18- 19-		, ,											
Drilł	Metho	Test Baring Services, Inc. od: Hollow Storn Auger September 27, 2006		40 M Pittsb	Vestei xurgh,	eering, Inc. In Avenue PA 15202 2) 761-1990			Hole Size: 5" Weather: Soony Shoot: 1 of 1	- 71)'s			

.

.

Pro Cli	oject: ent: K cation	lo: P060231x10 Route 19 Proporty GA Partners : Washington, PA	Engineering, Inc.						Borehole #: B-5 Elevation: 1235 +/- Engineer/Goologist: J. Mastron-Wil					
	\$U8 \	SURFACE PROFILE			SAMPLE	- <u>r</u>	·							
ttepsth	\$ ₇ mbol	Description	ปิธุรไวเซีเลิง.	Number	Type	Sampla Depth	Elows III	Recovery	N-Value blows/it 10 30 50	Wetter Lovel	Remar			
		Ground Surface												
1- 2-		Very stiff brown sally CLAY with rock fragments and	0.0	8-1	69	U O = 1.5	3 8 10	1.5			Moist			
3-		Bund (CL)	4.0	5-2	55	3.0 - 4.5	45 17 23	0.7			Moiat			
5		SANDSTONE												
6- 7-			5.5	S-3	S S	6.D - 7.G	14 18 21	1.5			Dry			
8 9-1 10-1		Completely to highly weathored gray silty to sandy SHALE		S-4	55	9.0 - 10.6	13 43 45	1.6			IJıy			
11														
13			13.2	S-5	59	12.0 - 13.2	20 40 50-2"	1.0			Dıy			
14				R-1	Core	13 .2 - 16 .5		25						
15-		Very soft to medium, gray soridy SHALE with gray SANUSTONE kayers, very broken to massive												
18- 18-		RQD=28%		₹-2	Corre	16.5 - 21.5		4.9			:			
20-			1	ļ										
		; Test Boxing Services, Inc. od: Helkow Stern Auger		40 V Pittsl	Veste: burgh,	eering, Inc. m Avenuc , PA 15202			Hole Size: 5" Weathor: Sunny	- 70*				
		September 28, 2006	ſ	יייטלכ	e: (412	2) 761-1990			Sheet: 1 of 2					

.

•

Clic	ent: Ke cation	konio 18 Property 34 Partners : Washangton, PA		En	Engineering, Inc.				Borehole #: B-5 Elavation: 1235 vi- Engineer/Geologist: J. Mastron-Wi				
-34 same	SUE	SURFACE PROFILE			 	SAMPLE	ſ	 3					
	Symbol	Descoption	Copth/Elev.	Nutriber	Stype	Sampie Deptin	Blowsift	Recovery	N-Valuo blowa/ft 10_30_50	Wator Level	Remarks		
21													
2 23 24		Medulim-hard, gray SANDSTONE, broken to massiva RUD=66%	21.4	R-3	Core	21.5 - 20.5		5.0					
5 25 7			24.2				L						
		Very soli to modum, gray sundy SHALE, vory broken to massive RQD=22%		13-4	Gare	26.5 - 31.5		5.Ò					
11777 21777 317			32.0	R-5	Core	34.5 - 32 0		0.5					
4 5 6 7		Markam hard to bard, gray Sil, TSTONE, very broken to massive RQD - 51%		K-Q	Core	32.0 - 37.0		5.0					
8-1- 9-1-				R-7	Core	37.0 -40.0		3.0					
			40.0	100]]		1 1			
) Driff	Metho	Test Boring Services, Inc. 21; Hollow Stem Auger September 28, 2006		40 V Pittst	Vestea ourgh,	eering, Inc. n Avenue PA 15202 2) 761-1990			Hole Size: 5' Weathor: Sunny	- 70's			

•

Proj Clici Loca	nt: KGA Pa ation: Was	19 Ргаролу		En	1 [SAMPLE	nc.		Borehole # Elevation: 1255' +/- Engineer/Geologis		
הקבאו	Symbol	Description	Deptriž(ev.	Number	Type	Dan Pa	Blowsfit	Recovery	N-Value blows/11 10 30 56	Water Level	Remarks
0 1 1 2	Stiff i	Graund Surface ail - 4 ⁺ prown silty CLAY with fragments, sand, and rics (CL)	20	S-1	55	0,0 - 1.5	134	1.1	•		Meist
11/11/1/1/1/1	Stiff & rock	prown silty CLAY with fragments (CL)	5.0	S-2	38	3.0 - 4.5	4 7 11	1.5			Me∕st
	rock	rey clayoy SILT with fragments (ML) sown sity CLAY with	7.0	S-3	SS	6.0 - 7.5	573	0.7			Moist
	rock (tagmecis (CL)	10.0	5-1	SS	9.0 - 10.5	17 17 18	05			Moist
	Life Comp	lotely to highly ered gray		ŝ-5	S S	i2.0 - 13.5	10 17 9	1.5			Dry
5 6 7		TONE		S-6	SS	15,0 - 16 5	16 20 23	1.5		and the second of the Street Meridian	Dry
			18.2	3-7	SS	18.0 - 10.5	37 41 3?	1.5			Dry
A IInC	Aethod: Ho	koring Services, Inc. Ilow Stem Auger moer 25, 2006		40 V Pittst	Vestei purga	eering, Inc. In Avenue PA 15202 2) 761-1990			Hole Size: 5" Weather, Sunny - Sheet: 1 of 3	70's	

Client: K	Routo 19 Property SA Partners ; Washington, PA		Ēn	1C gine	Coring. I	Engineer/Geologist: J. Mastren-W					
Symbol Symbol	Description	Gepth/Elev.	Numbor	Typo	SAMPLE adduces	Blowsrift	Recovery	N-Value blovs/ft 10 30 50	Water Level	Remark:	
21 22 22 23	Completely to highly weathered black corponaceous SHALE with layers of coal		S-8	SS	21.0 - 22.5	15 23 21	1.5	/	- ==	l I ry	
24 25 26	Hand, gray silly SHALE, vary broken to blocky ROD=0%	23.5	S-9 R-1	SS Core	24 0 - 24.9 25 0 - 27.0	22 50 4"	0.7 2.0	\backslash		Wai	
27 28 29 30 31	Soft to modeum-hard, gray sandy SHALE, very broken to blocky RQD=6%	27.0	R-2	Core	27.0 - 32.0		5.0				
37	Hard, gray silay SHALE, very broken to blocky RQD=15%	32.0				parta II	4:				
34 35 35 36 36 37 37 38 38		34 0	R-3	Core	32.0 - 37.0		4,5				
39 40			R-4	Core	37.0 42.0		4.8				

.

Pro Clic	ject: F Int: K ation	to: P060231x10 Route 19 Property GA Partners : Washington, PA SSURFACE PROFILE		En	1 [SAMPLE	nc.	Borefiole #: B-7 Elevation: 1255' +/- Engineer/Geologist: J. Mastren-Wills			
Depth	Symbol	Description	0apth:El=v.	Number	Type	Sempie Depth	Blewsitt	Recovery	N-Value blows/it 10 30 50	Water Level	Romarks
4 2 3 4 5 6 7		Soft to hard, gray sandy SHALE with SANDSTONE layers, very broken to massive ROD=17%	47.2	R-5	Сога	42.0 - 47.0		5.0			
48 49 50 51 51	المارية (1994) - 1997) - 1977		47.2	R B	Core	47.0 - 52.0		4.0			
52 53 54 55 56 55 56 56 56 56 56 56 56 56 56 56		Hard to very hard, gray SILTSTONE, very broken to massive ROD-35%		R-7	Core	52.0 - 66.6		3.5			
175757777777 58 59 60			507-0	R-8	Core	<u> 65.6 - 60.0</u>	5	0			
Drill I	Mesho	Test Boring Services, Inc. og: Heliow Stem Auger September 25, 2006		40 V Pittst	Vester ourgia,	селінд, Ілс. ть Avenue РА 15202) 761-1990			Hote Size; 5" Weather: Sunny - Sheet 3 of 3	- 70's	

Project No: P060231x10 Project: Route 19 Property Client: KGA Pariners Location: Washington, PA SUBSURFACE PROFILE				SAMPLE				Borehole #: B-8 Elevation: 1230 ⁻⁴⁴ Engineer/Geologist: J. Mastren-Willian				
Indan	Symbol	Description	Dopth/Elev	Mucuber	Type	Semple Depth	Blowsift	Rocovery	N-Value blova/lt 10 30 50	Waler Level	Remarks	
0170751411 2		Ground Surface Topsoil - 4* Firm brown silty CLAY with rock fragments and organics (CL)		S-1	ss	0.0 - 1.5	- 2 3	1.5			Moist (
3 4 5		Completely weathered COAL	4.0	S-2	SS	3.0 - 4.5	4 8 9	0.8			Moist	
5 7 8		Completely to highly weathered black carbonaccous SHALE with cost layers		5-3	SS	6 [°] 0-7.5	8 10 14	1.5	4		Moist	
9 0 1				S-1	SS	9.0 - 10.5	11 13 14	1.4			Day	
2 3 4			1775	S-5	88	12.0 - 12.7	27 50-2*	0.5		•	llry	
- 5 6 7		Completely weathered gray sandy SHALE		S-6	SS	15.0 - 15.8	17 50-3"	0.4			Dry	
		End of Test Horing	17.8									
Drill	Metho	: Test Boring Services, Inc. 66: Hollow Slem Auger September 27, 2005		40 V Pittst	Vestei purgh,	eering, Inc. m Avenue PA 15202 ?) 761-1990			Hole Size: 5" Weather: Sunny- Sheet: 1 of 1	- 70's		

÷

Project I	No:	P060231x10
-----------	-----	------------

Project: Route 19 Property

Location: Washington, PA

Client: KGA Padners

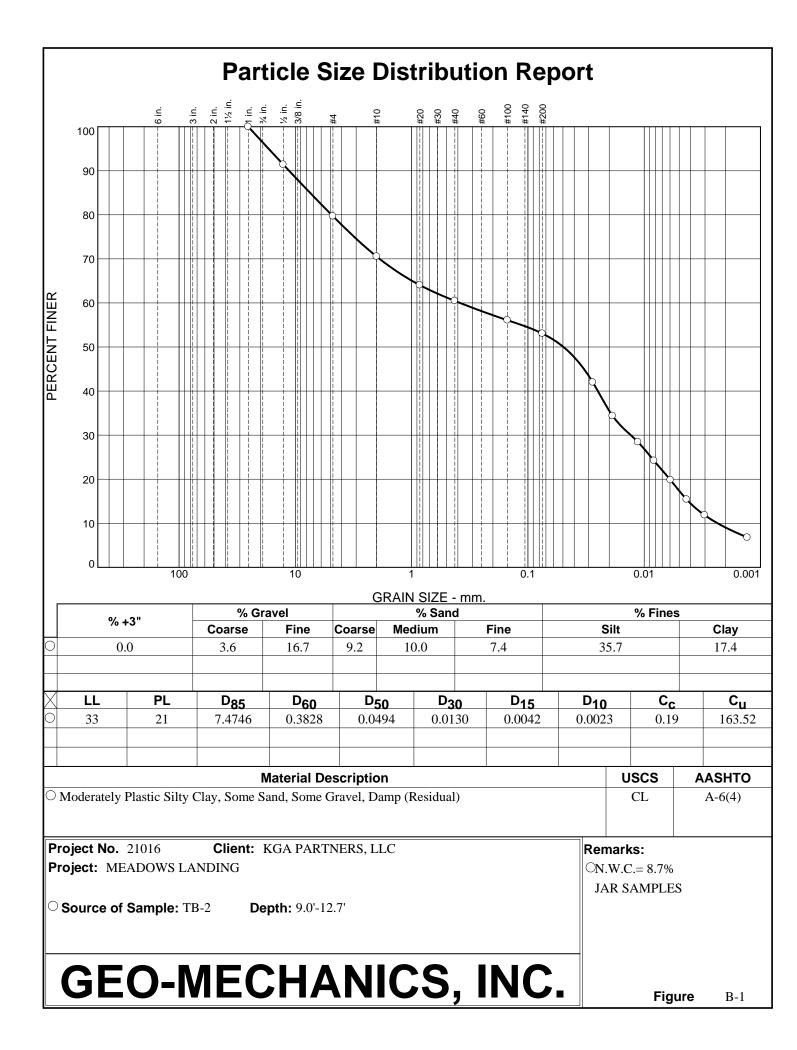
.

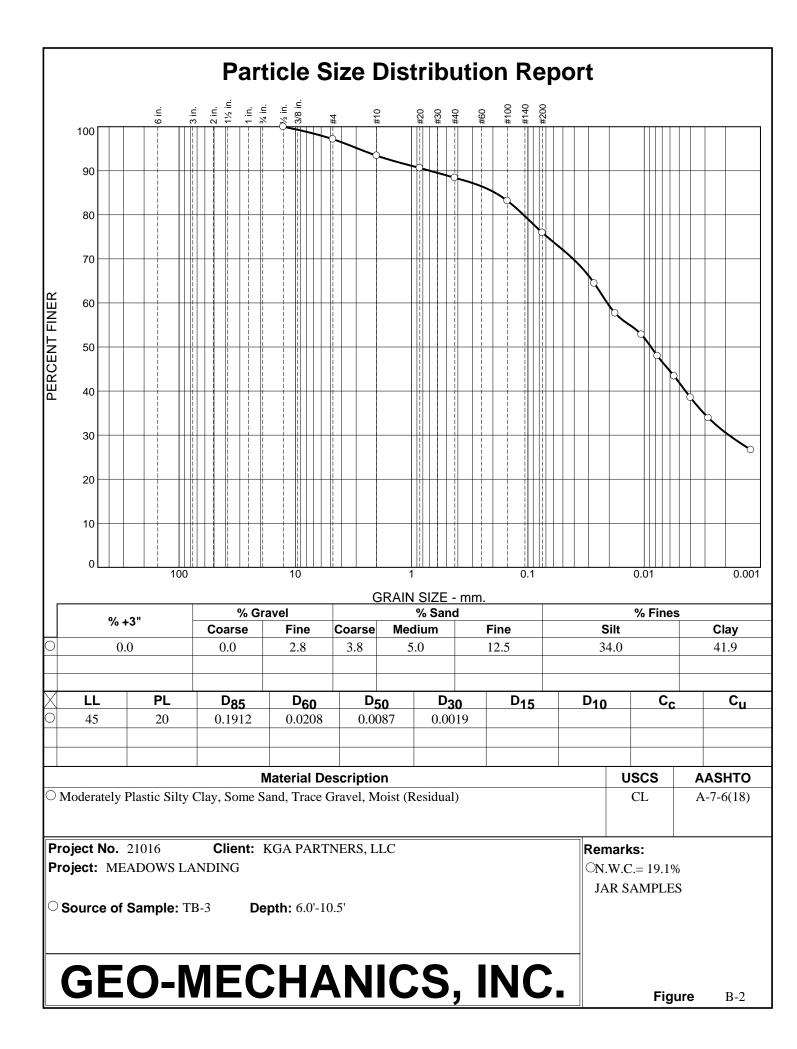
Borehole #: B-9

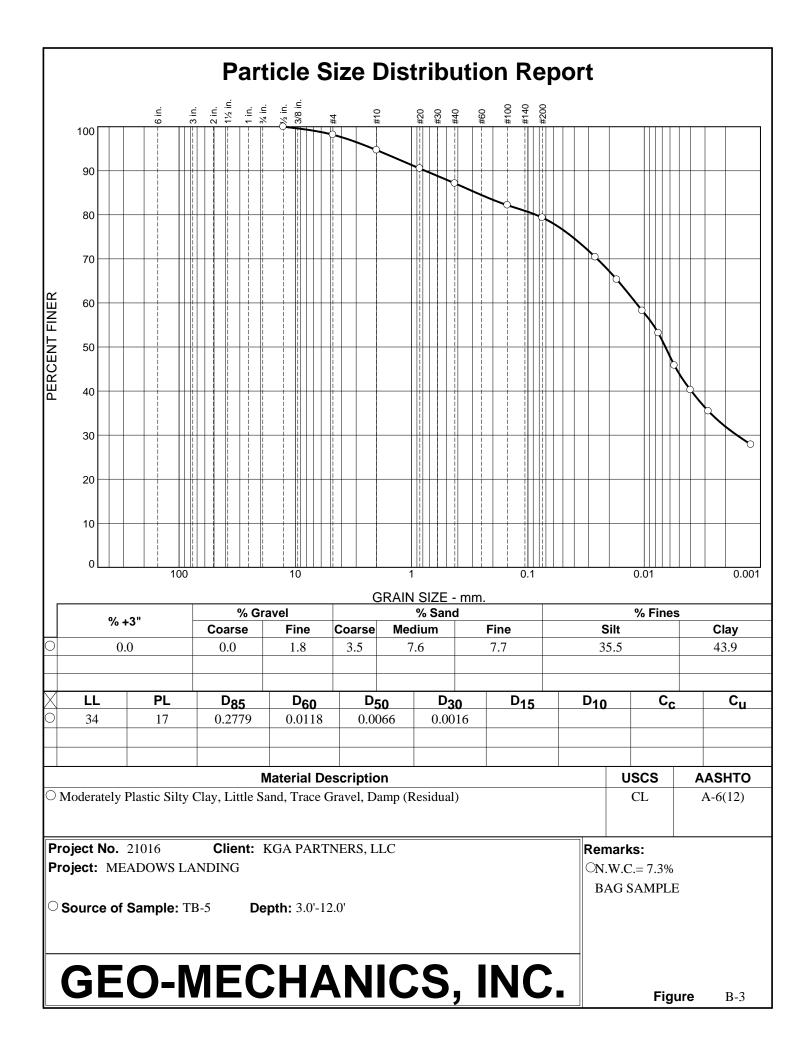
Elevation: 1215' +/-

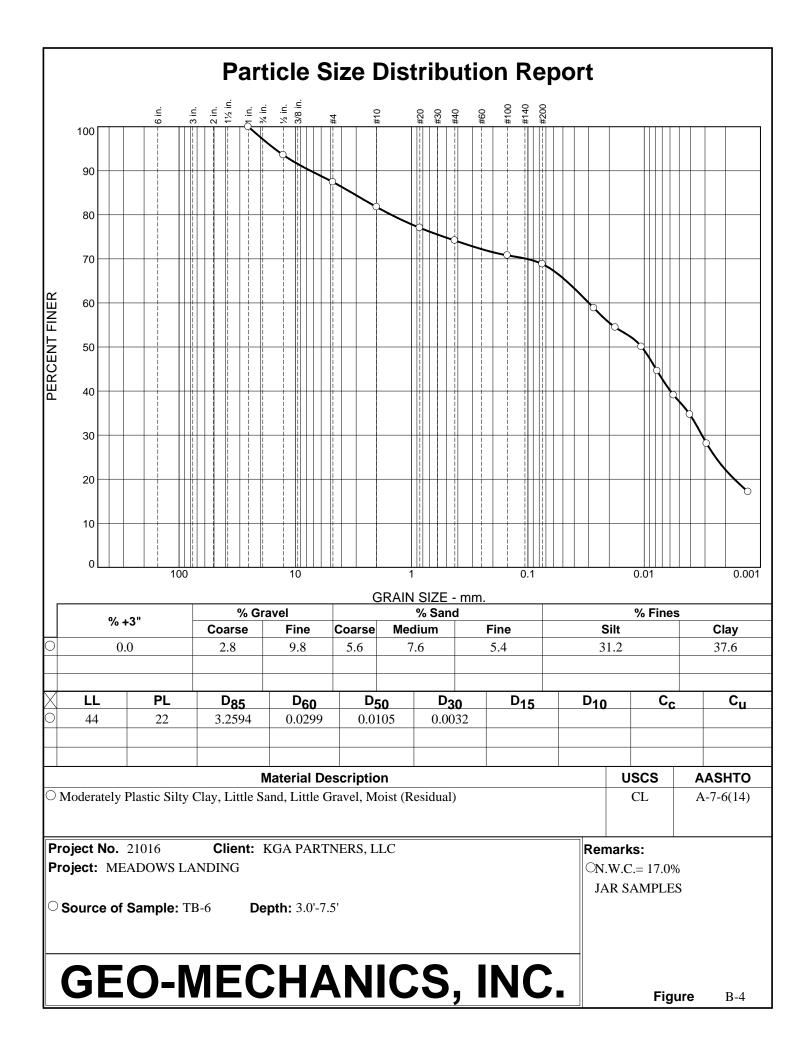
.....

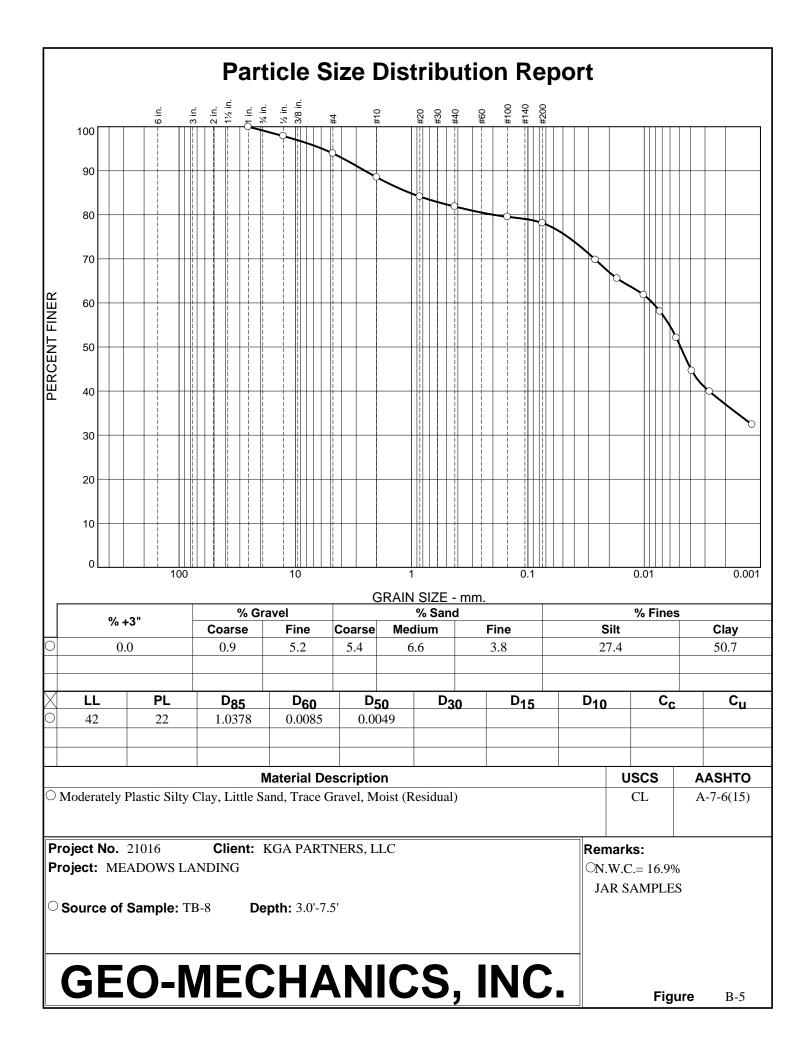
.

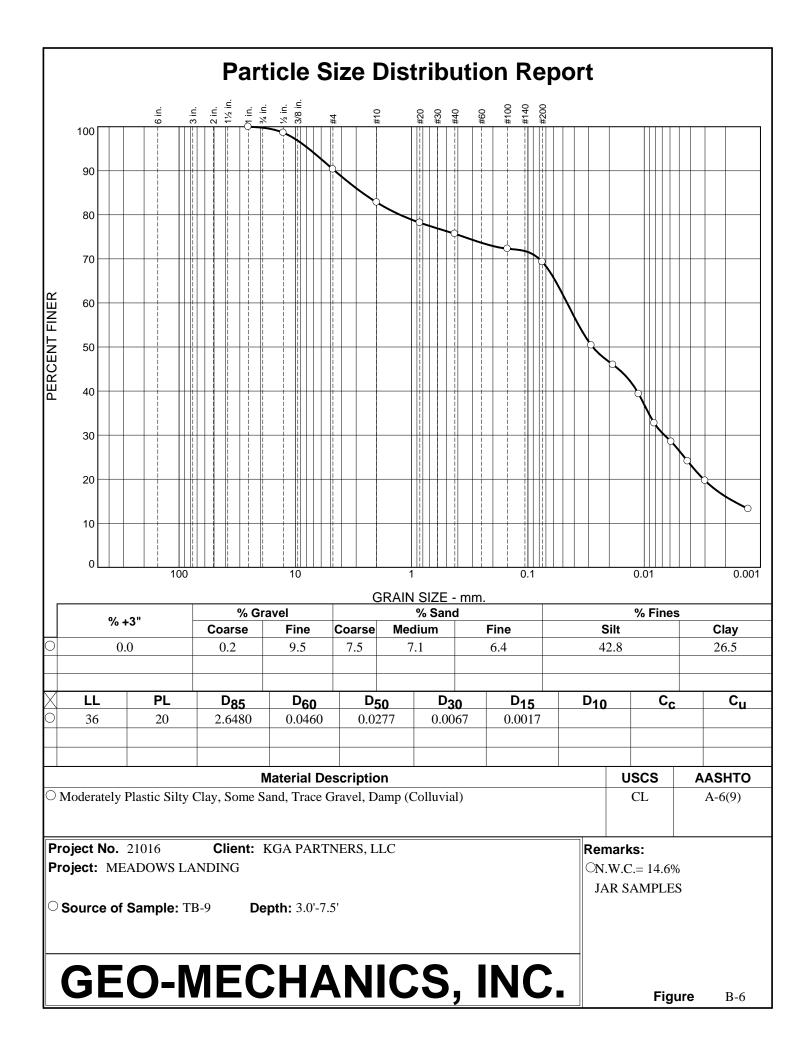

Engineer/Geologist: J. Mastren-Williams

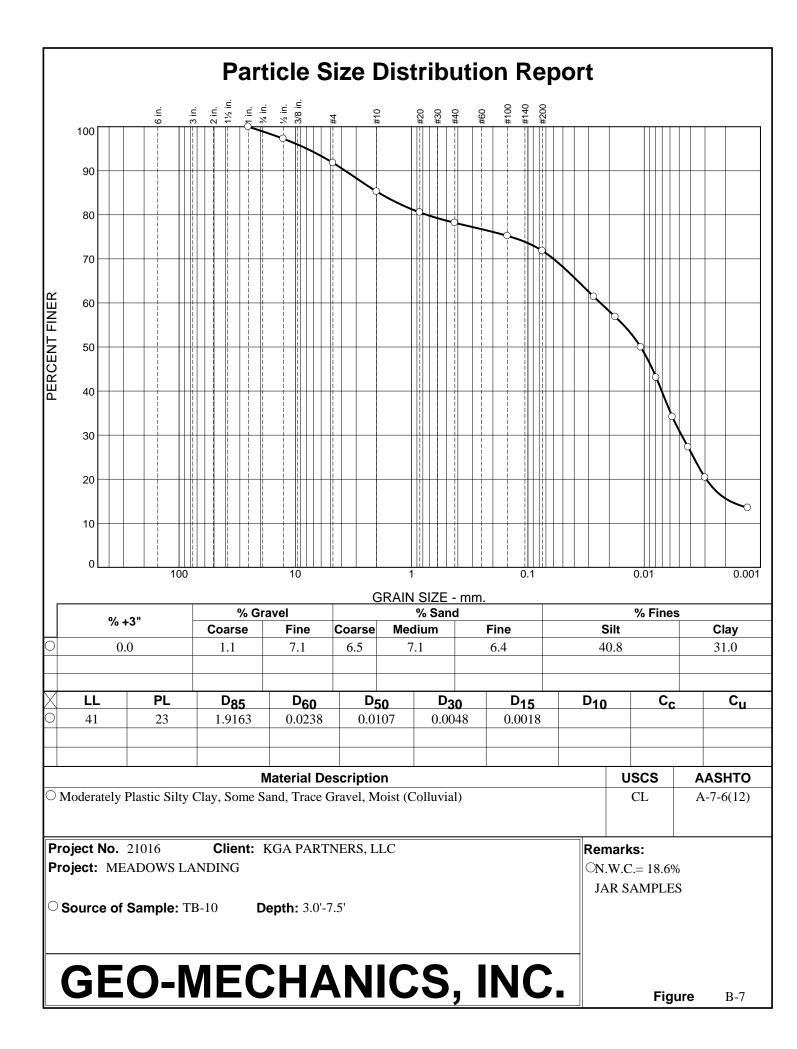

	SUBSURFACE PROFILE				SAMPLE						
Lepin	Symbol	Description	Depth/Elev.	Number	Туре	Sample Deph	Blowsrit	Receivery	N-Vatue blows/ft 10 30 50	Water Level	Remarks
		Ground Surface					Į –	1	· · · · · · · · · · · · · · · · · · ·		
يمياي		Topsoil - 1"	0.0	\$-1	88	0.0 - 1.5	くろう	09	1		Moist
a co a a alterimente		rock fragments (ML)	4.0	\$-2	SS	3.0 - 4.5	5 ១ ខ	1,5	* * * * * * * * * * * * * * * * * * *		Mo.at
2 7 0 7 2 2 1 0 2 2		Shiff to very shiff gray silty CLAY with rock tragments (CL)		5-3	55	6.0 - 7 5	6 5 8	08			Moist
997777 91777777777777777777777777777777		Very stiff brown silty CLAY with cock (ragments (CL)	a.n	\$×4	SS	9.0 10.5 ,	10 13 13	3.5			Manta
12 13 13 13 14 14			13.0	S-5	ss	12.0 - 13.5	12 15 15	7.5		1	Moist
15 16 17 17 17		Completely weathcred gray saty SHALE		S-6	SS	15.0 - 18.5	15 10 22	1.5			Эгу
18-19-19-19-19-19-19-19-19-19-19-19-19-19-		Completely weathered gray SILTSTONE	38.5 20.0	S-7	\$5	18.5 - 20.0	15 10 18	1.0	[Dry
Drill Method: Hollow Stem Auger					ACA Engineering, Inc. 40 Western Avenue Pittsburgh, PA 15202 Phone: (412) 761-1990				Hole Size: 5' Weather: Sunny Sheet: 1 of 1	- 70's	

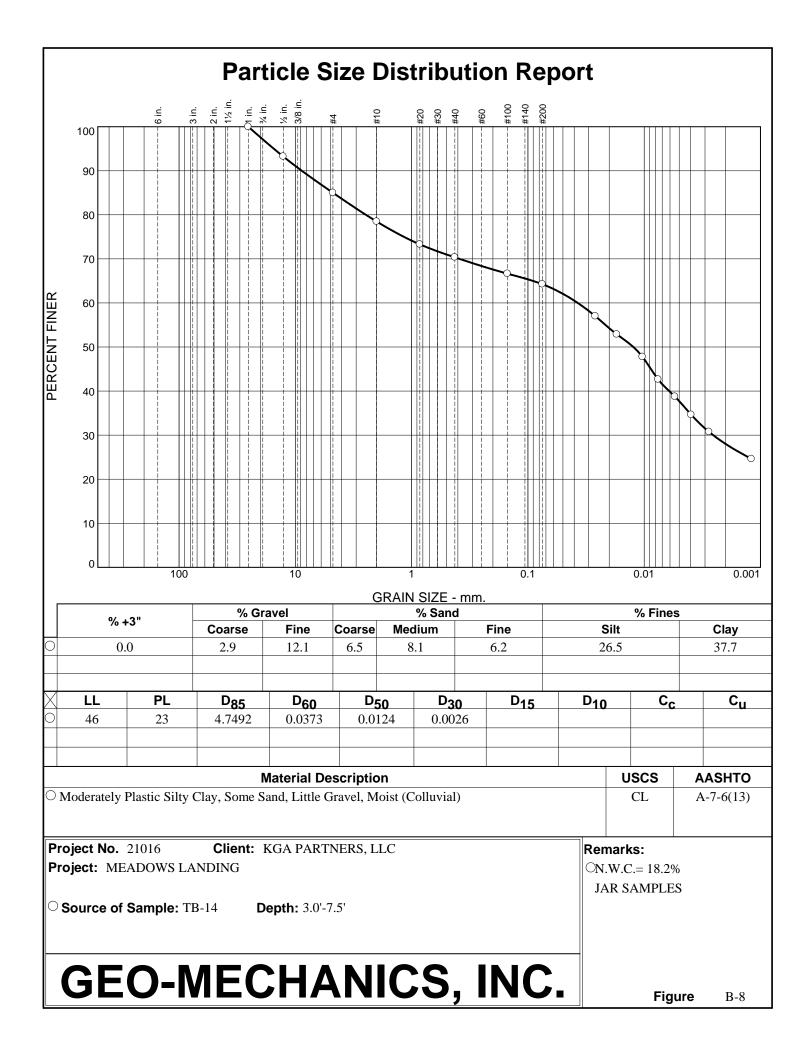

.

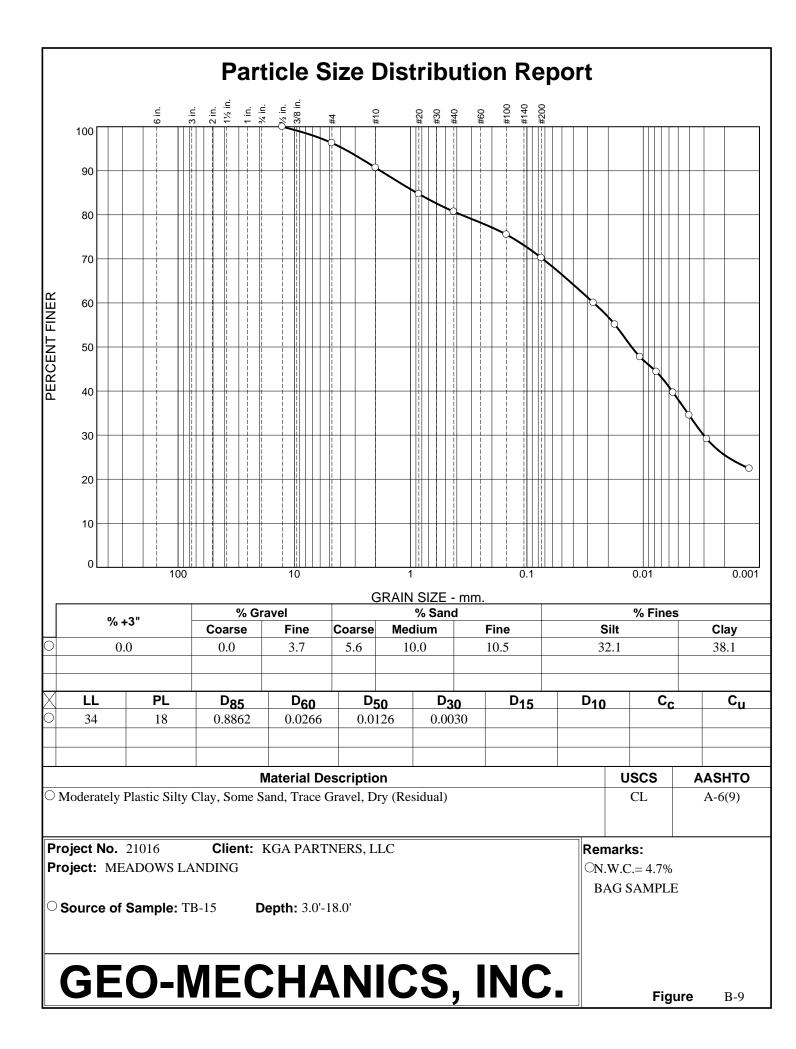

.

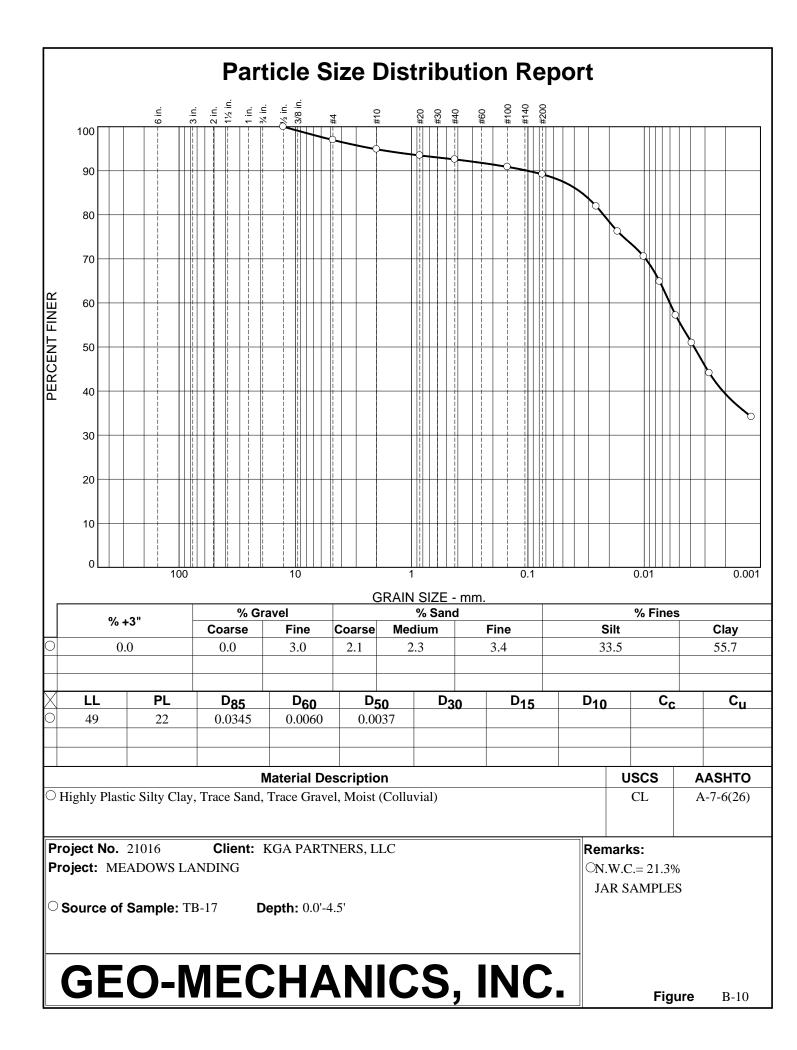

APPENDIX B Laboratory Tests Results Current Investigation

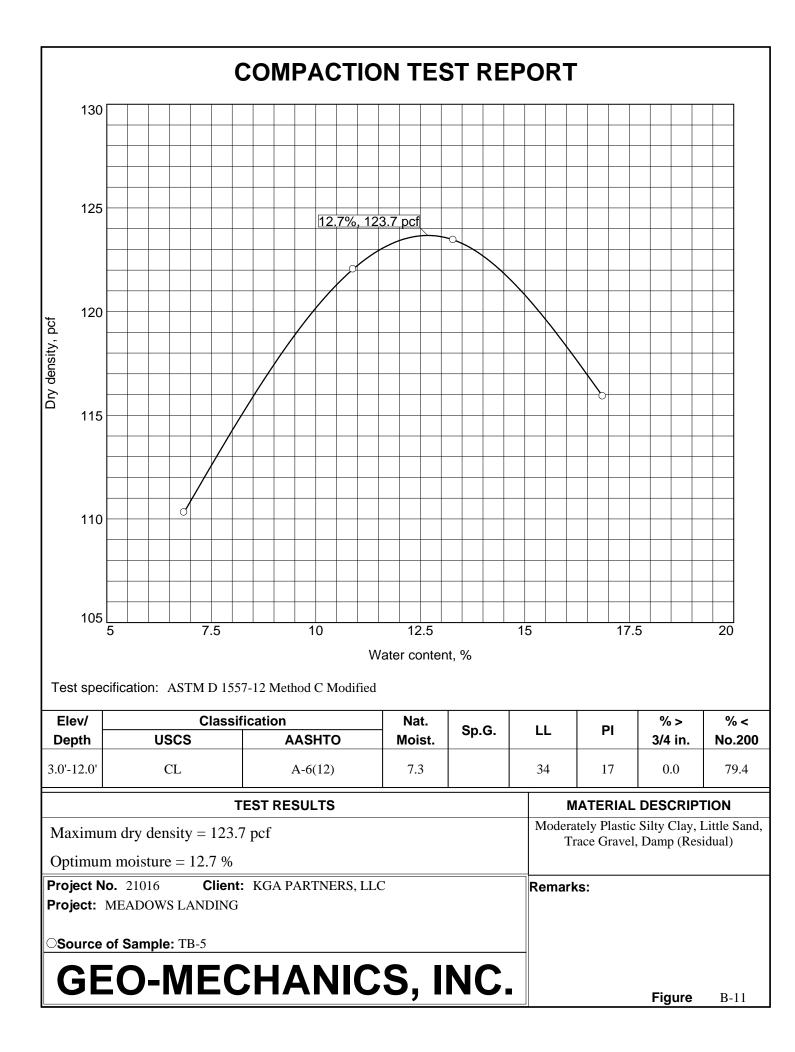


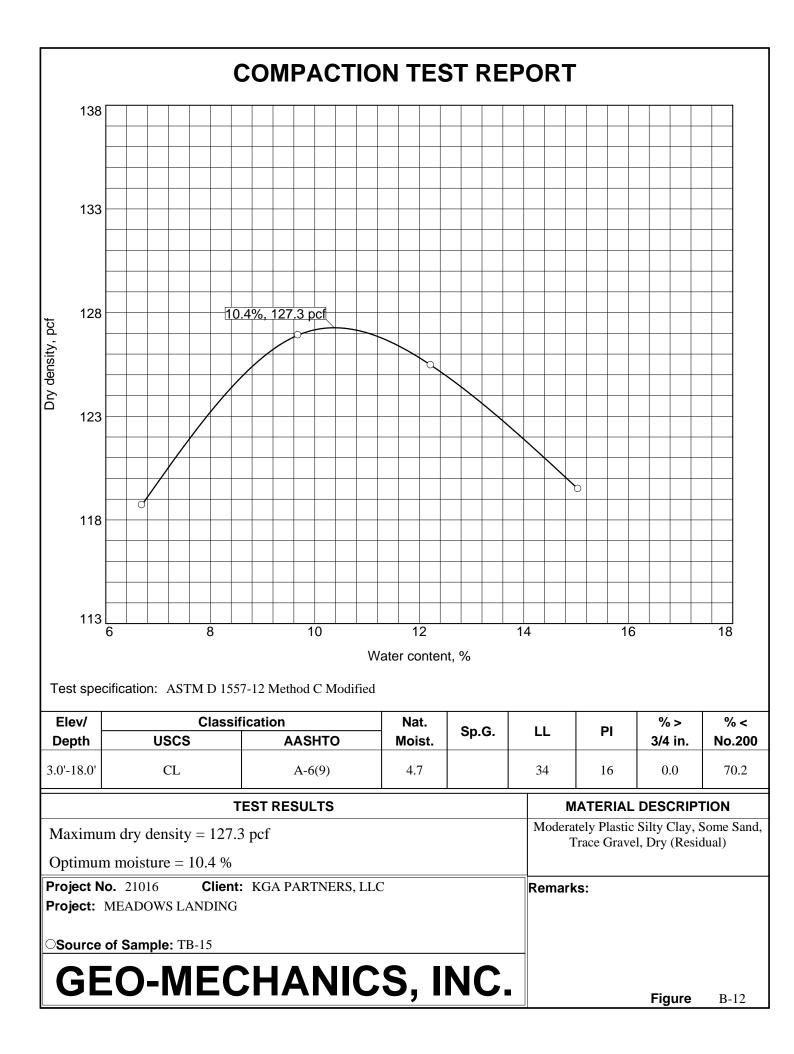


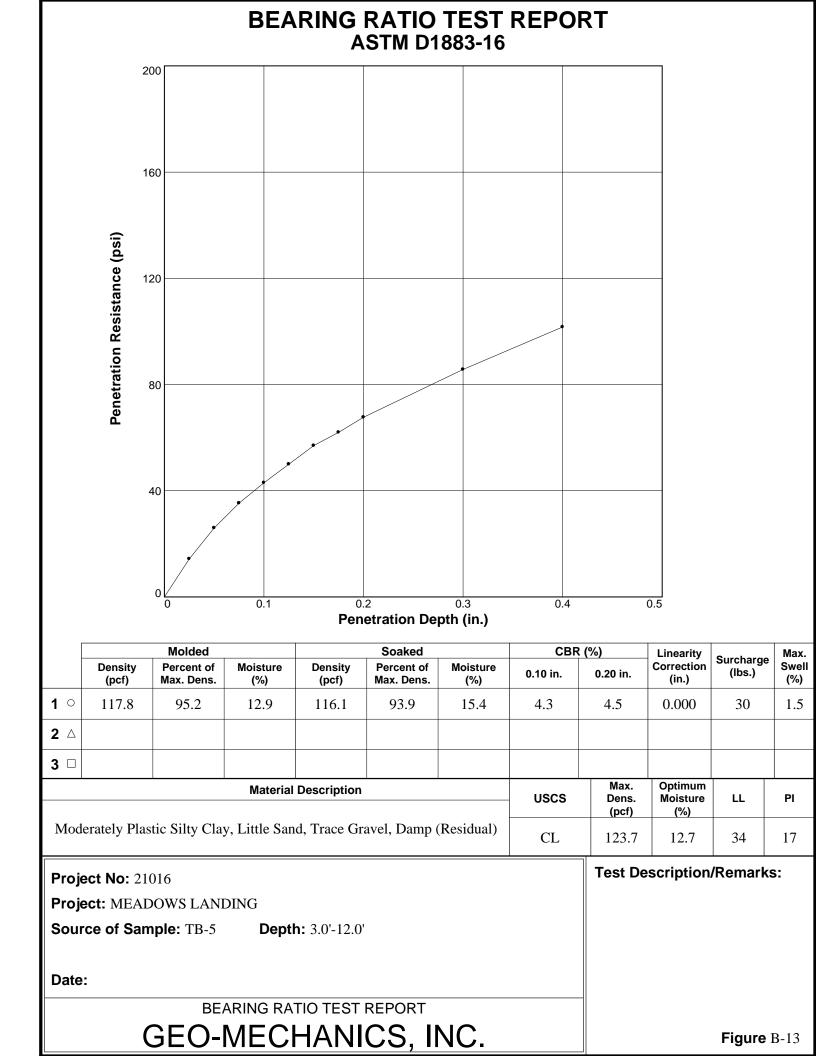


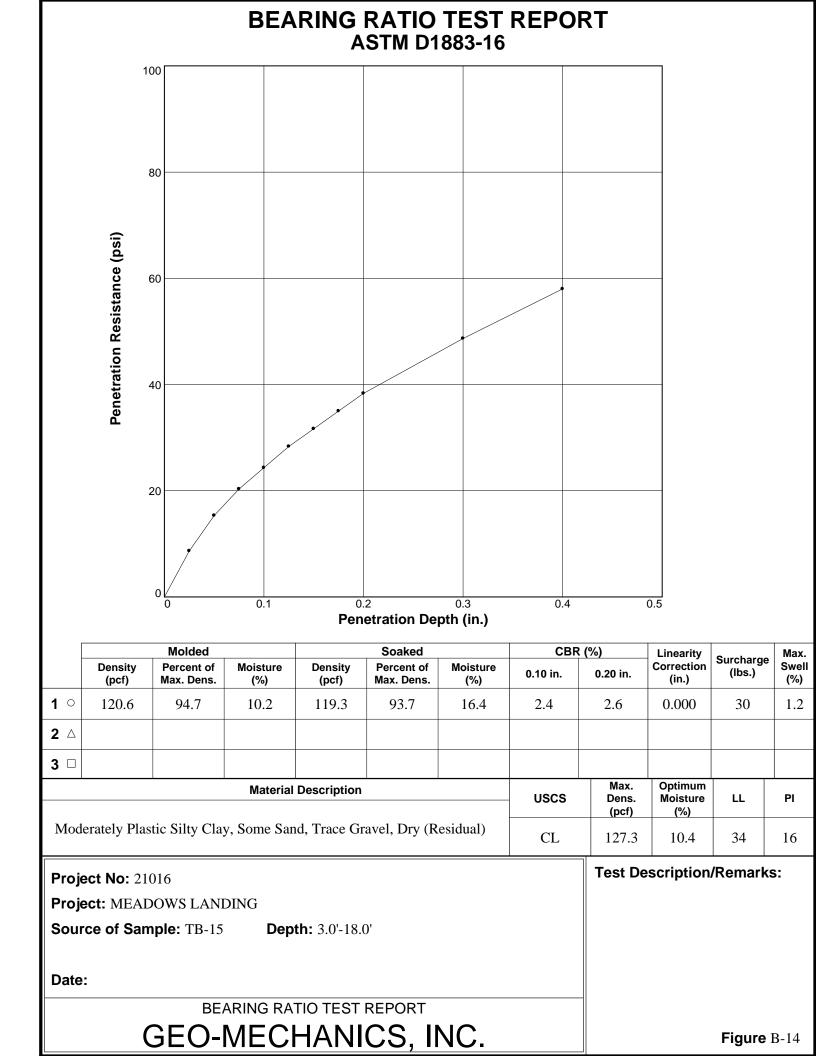


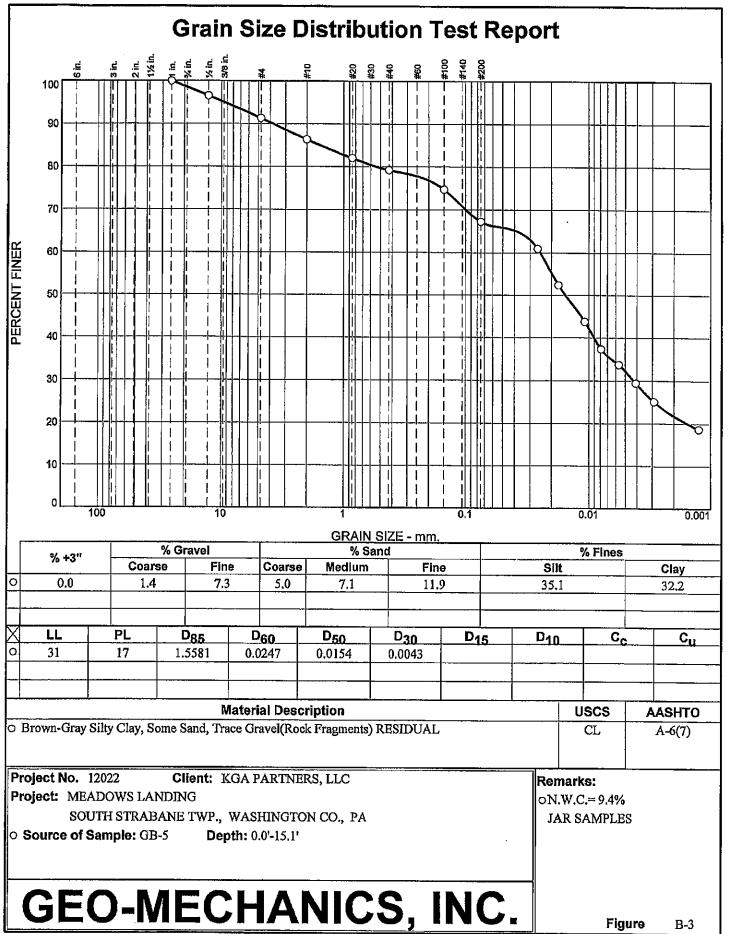


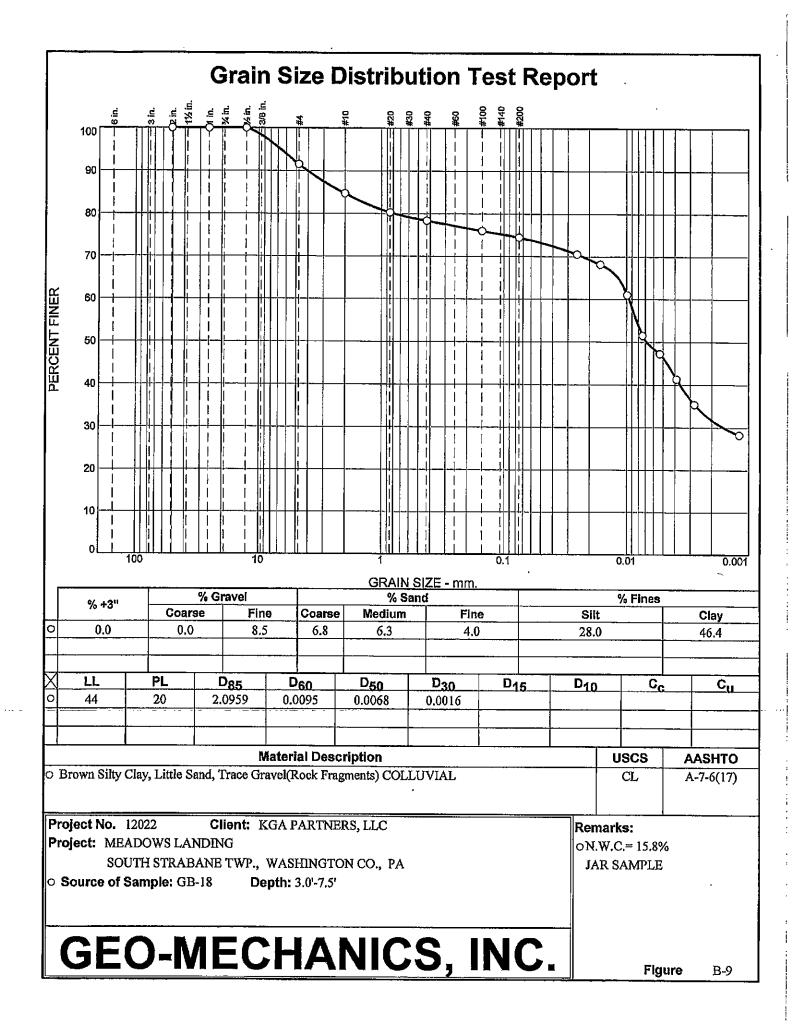


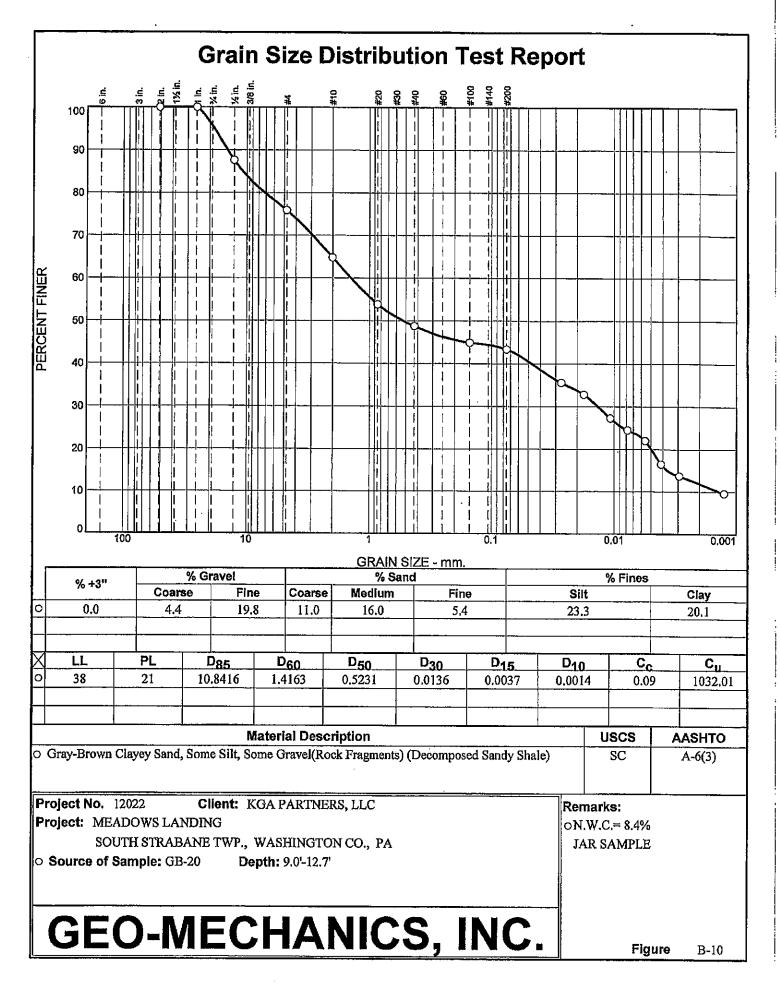


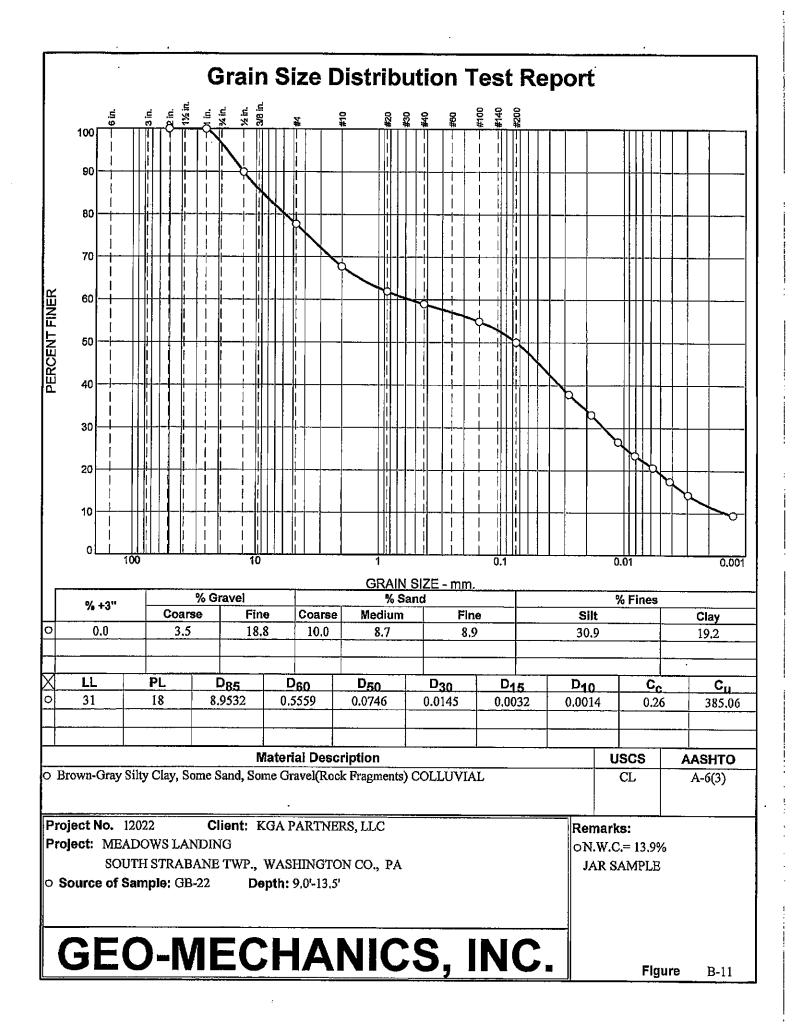


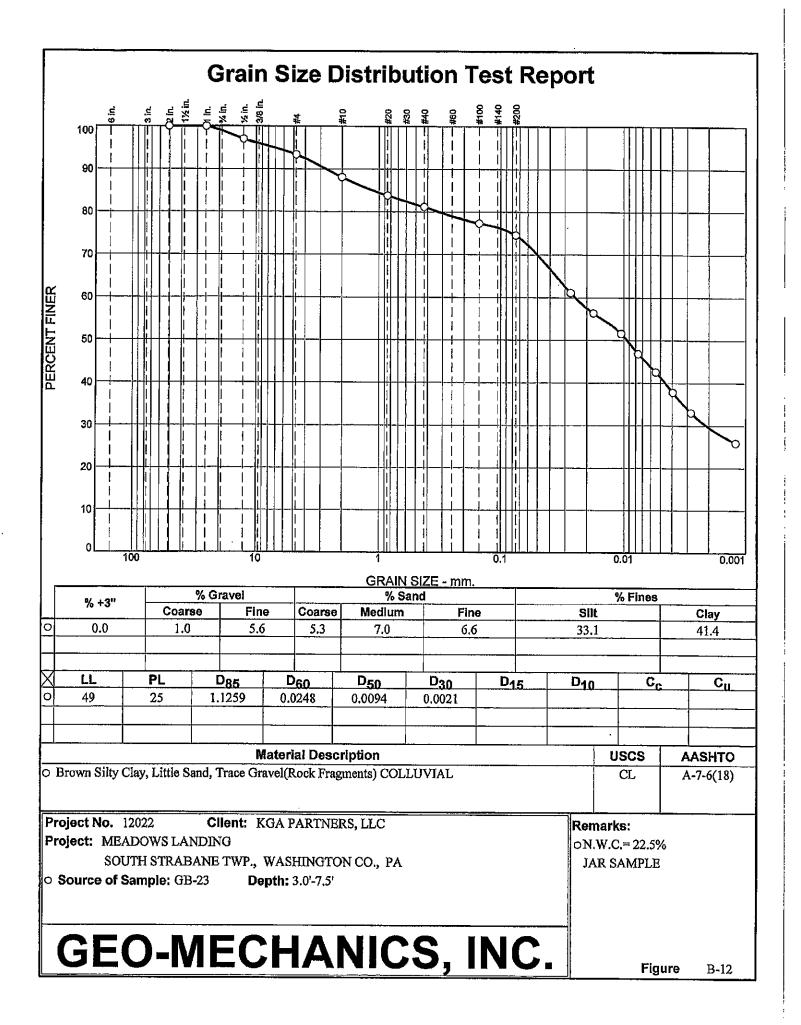


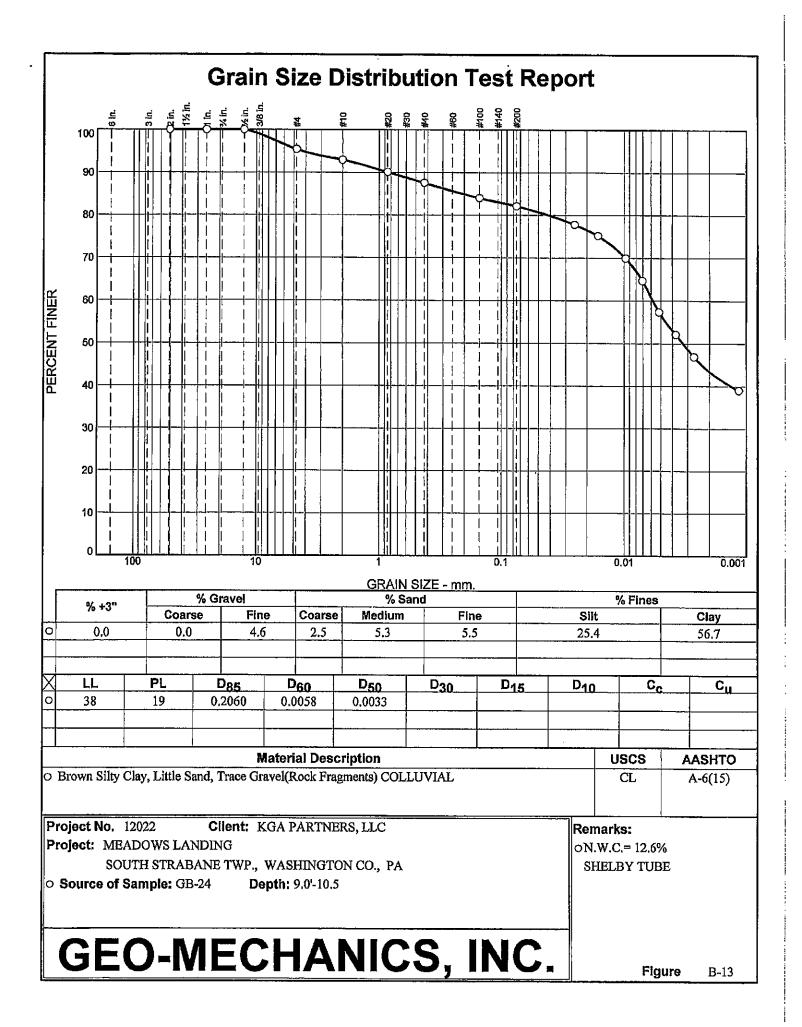


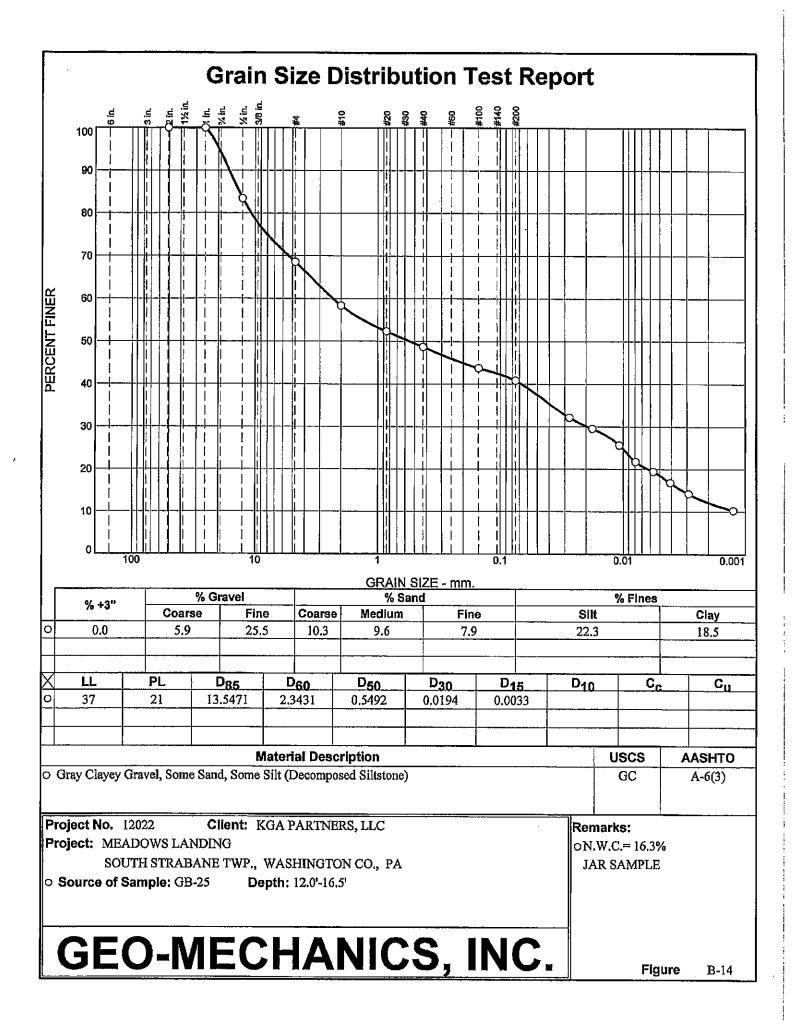


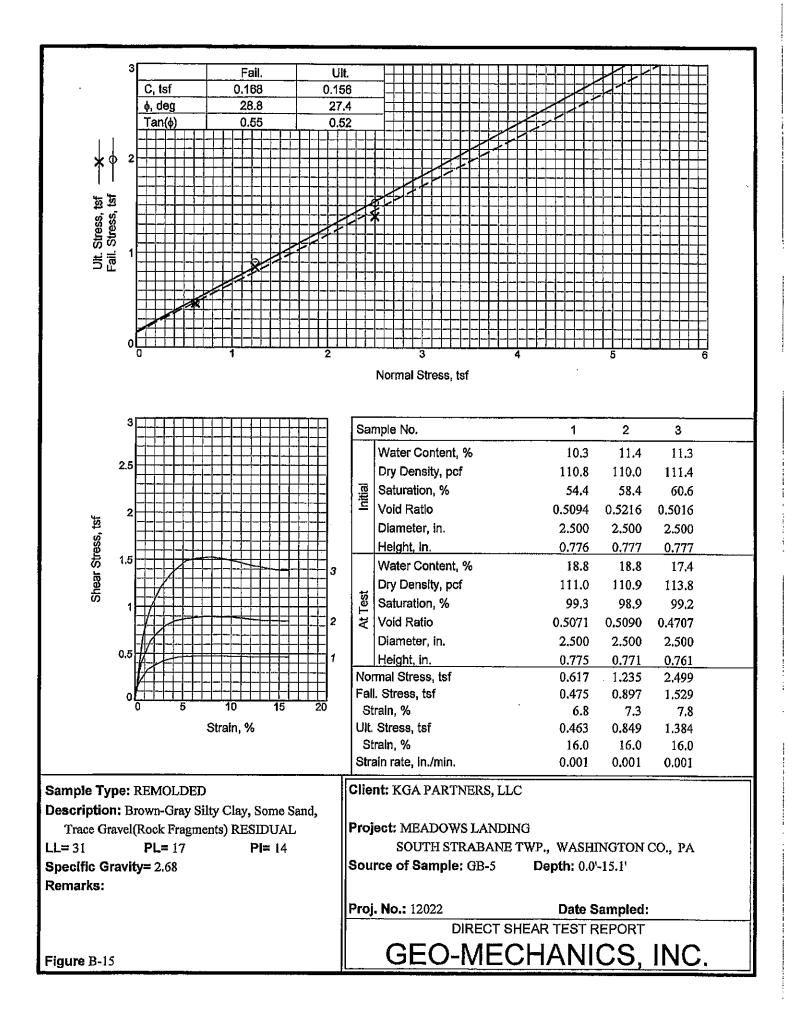


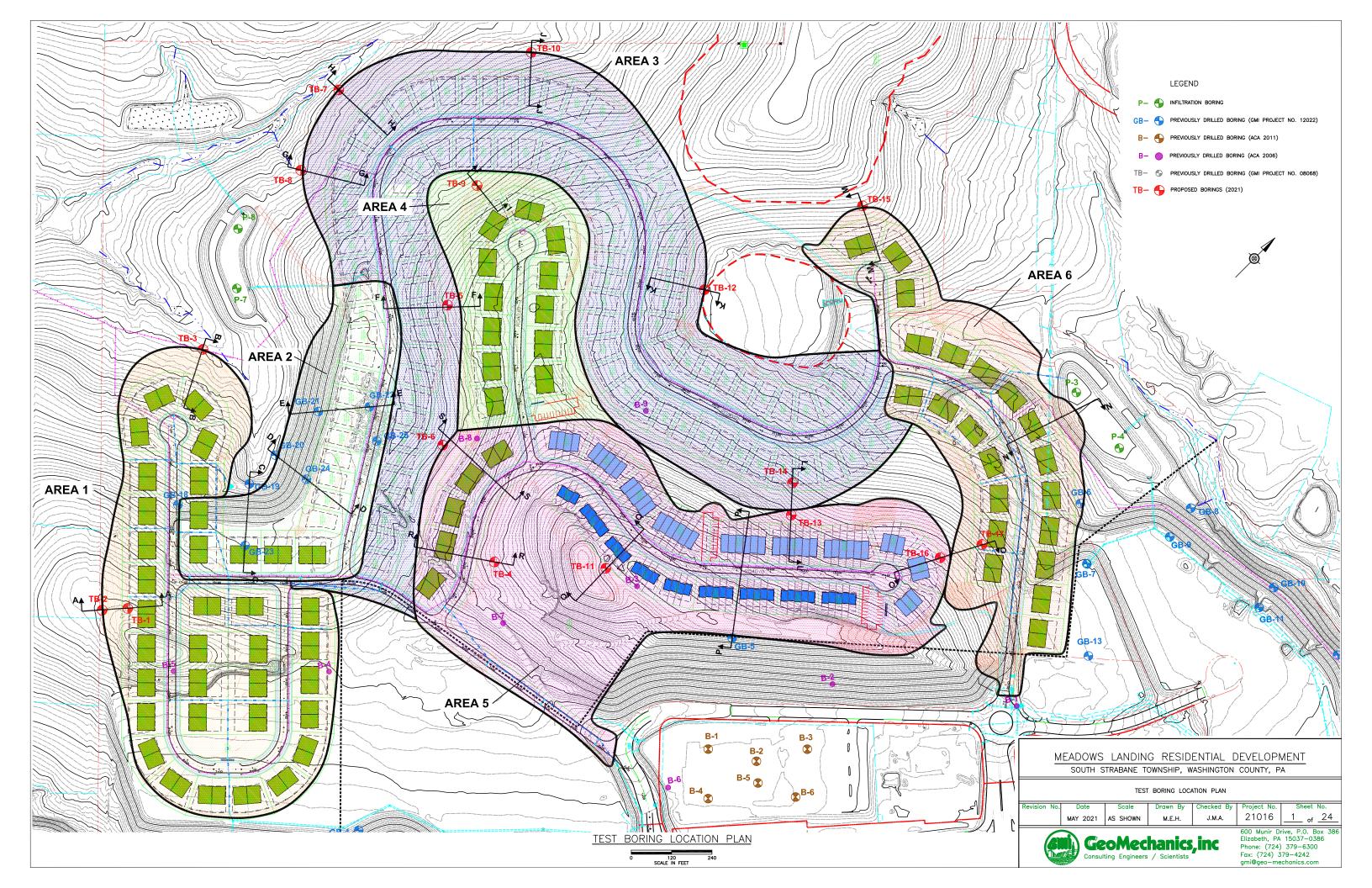

APPENDIX B-1:

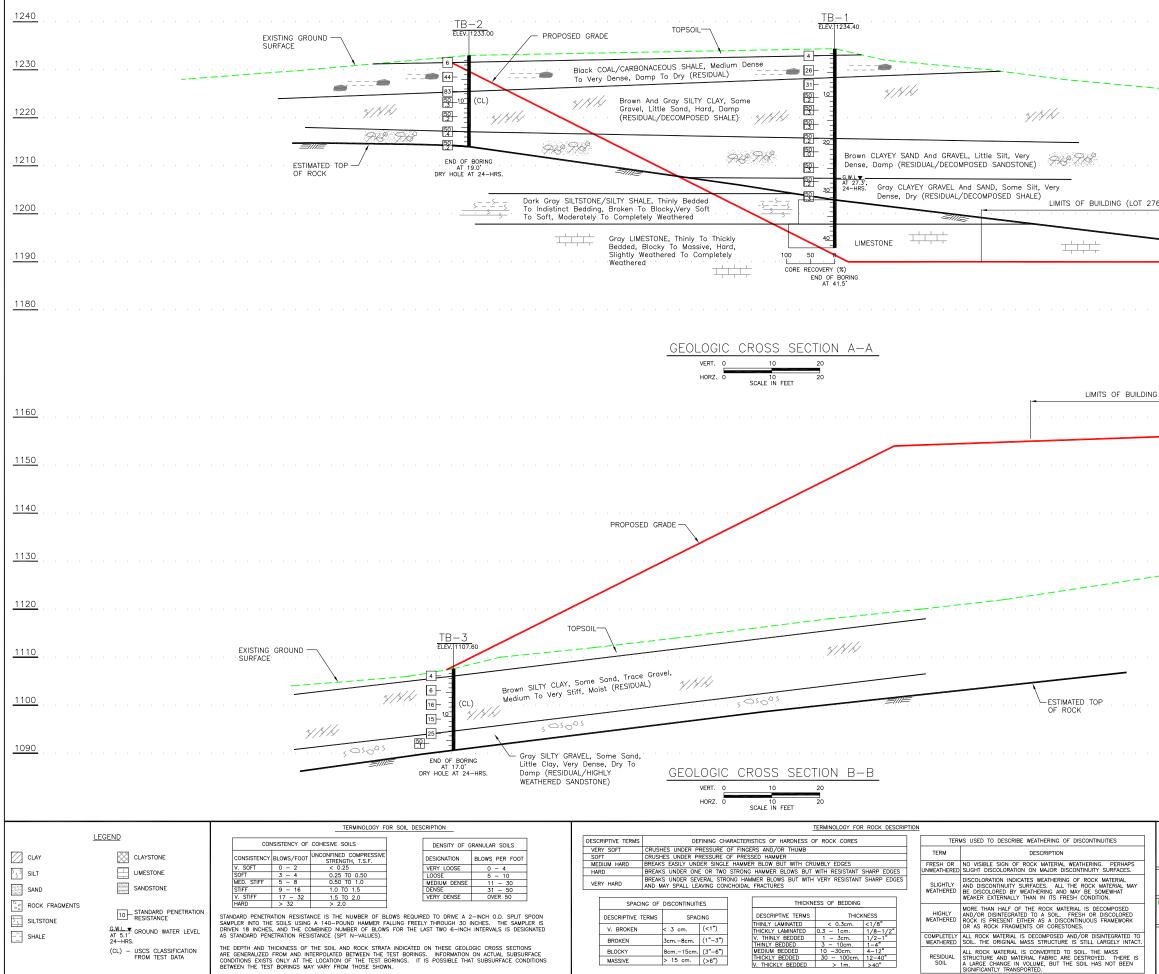

Relevant GeoMechanics, Inc. Laboratory Test Results 2012 Investigation

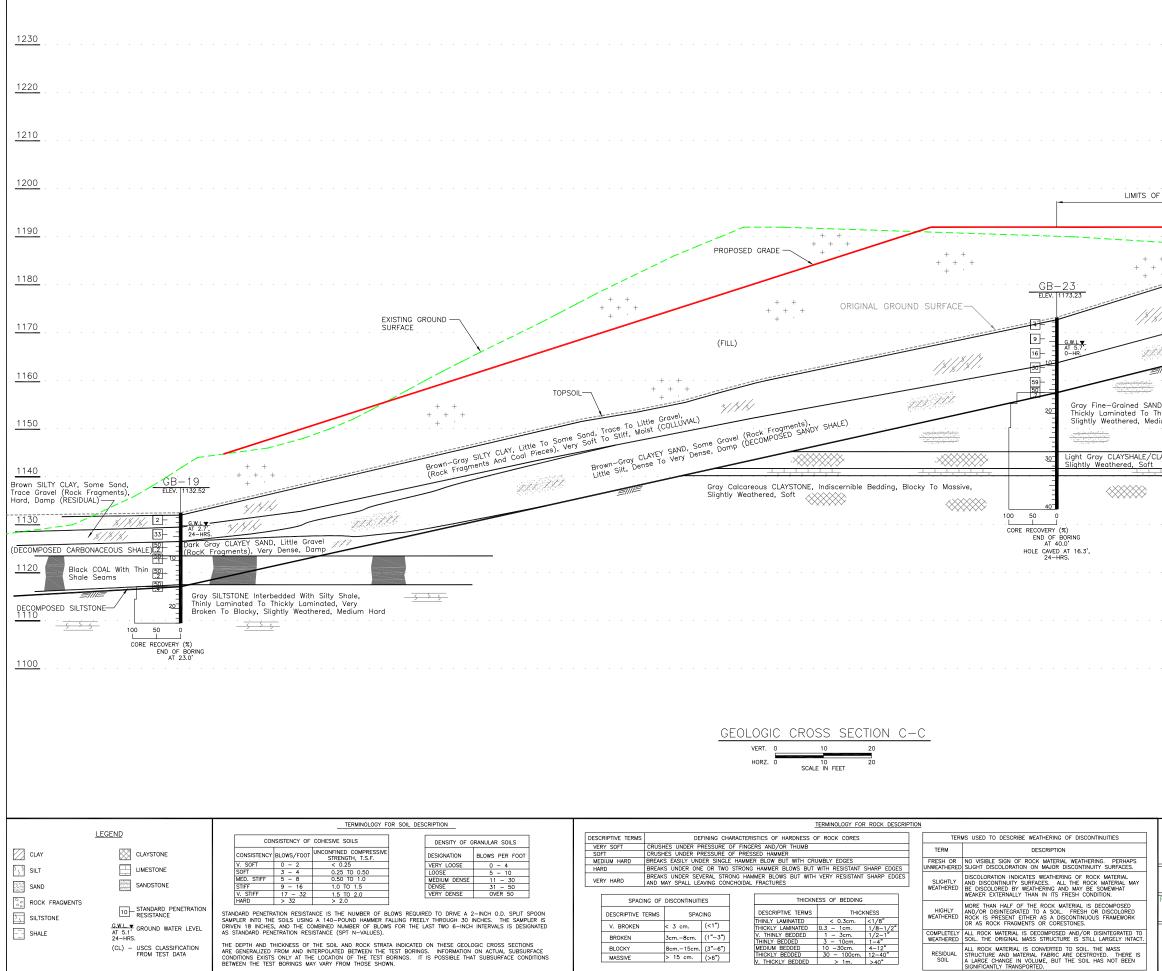




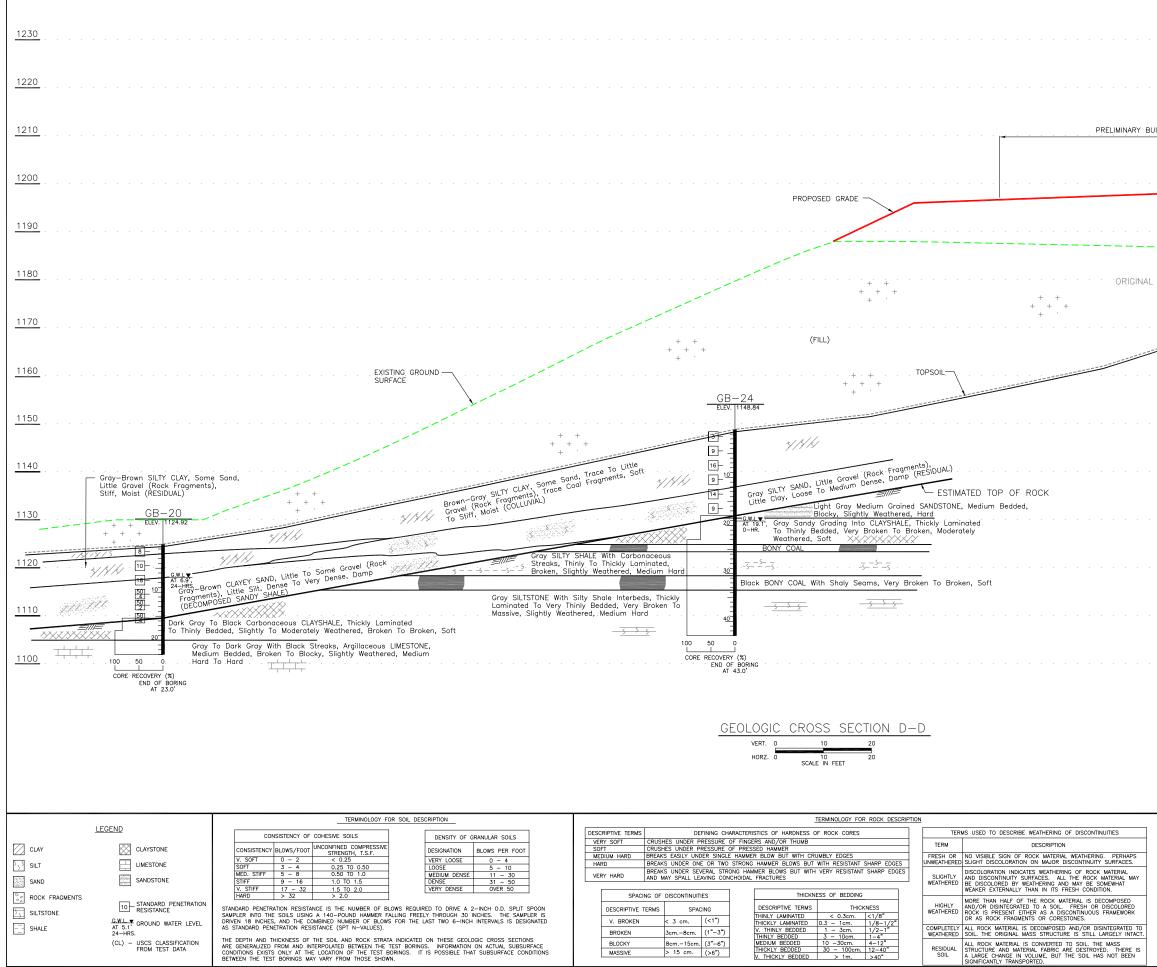


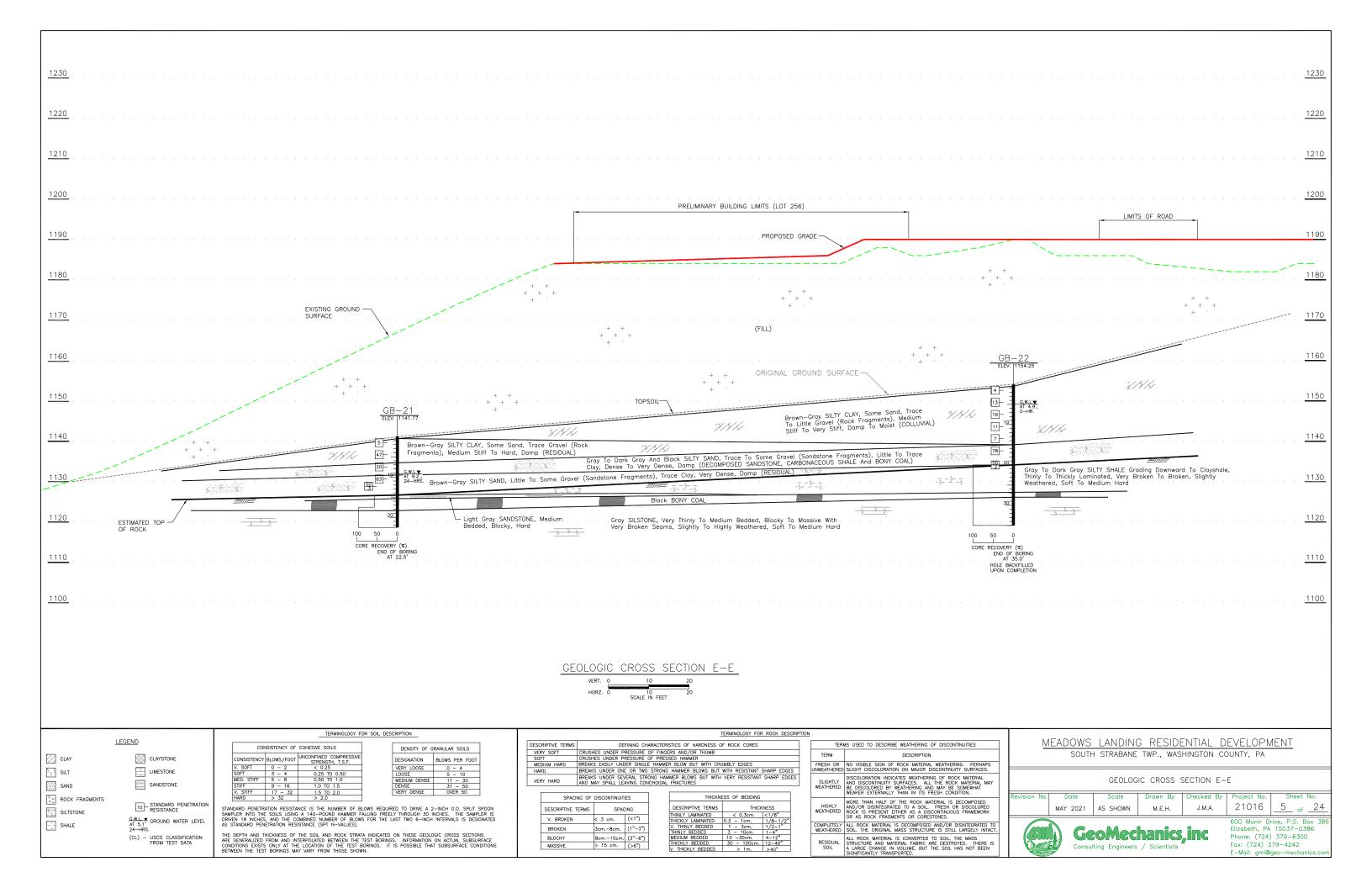


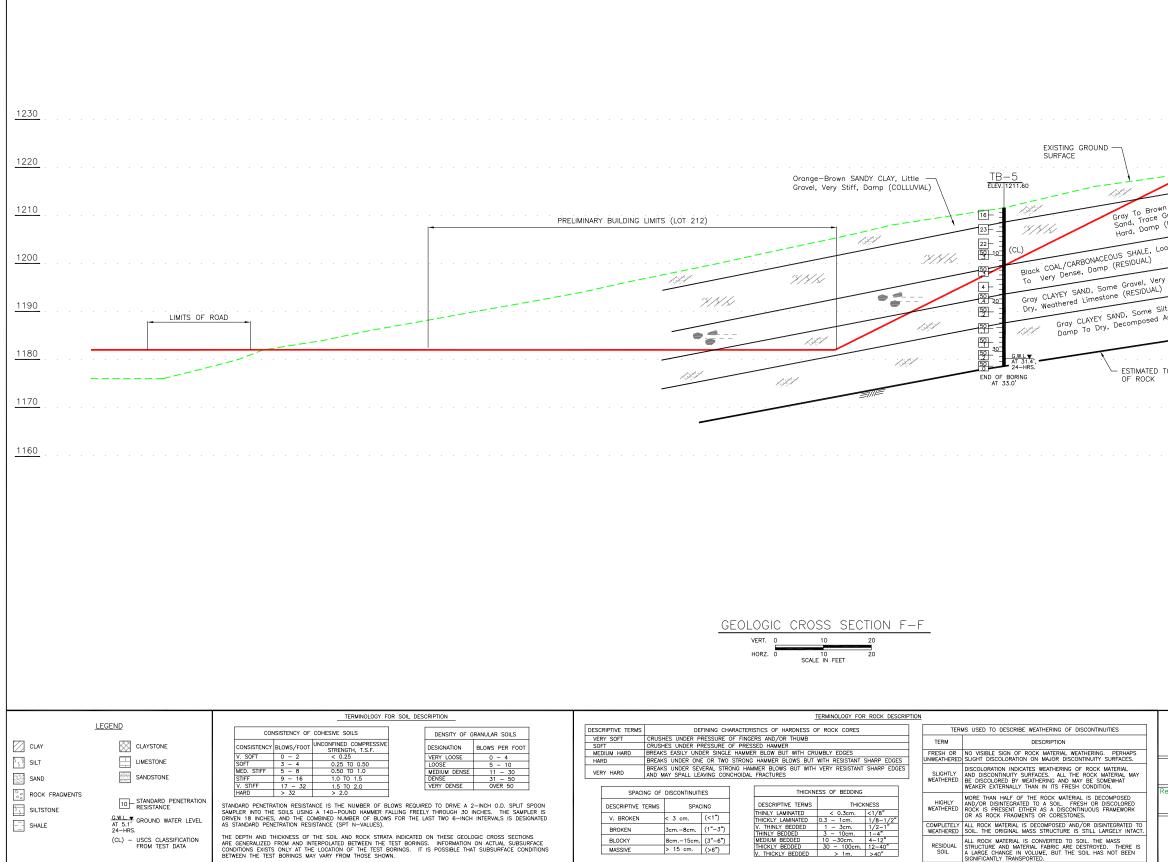




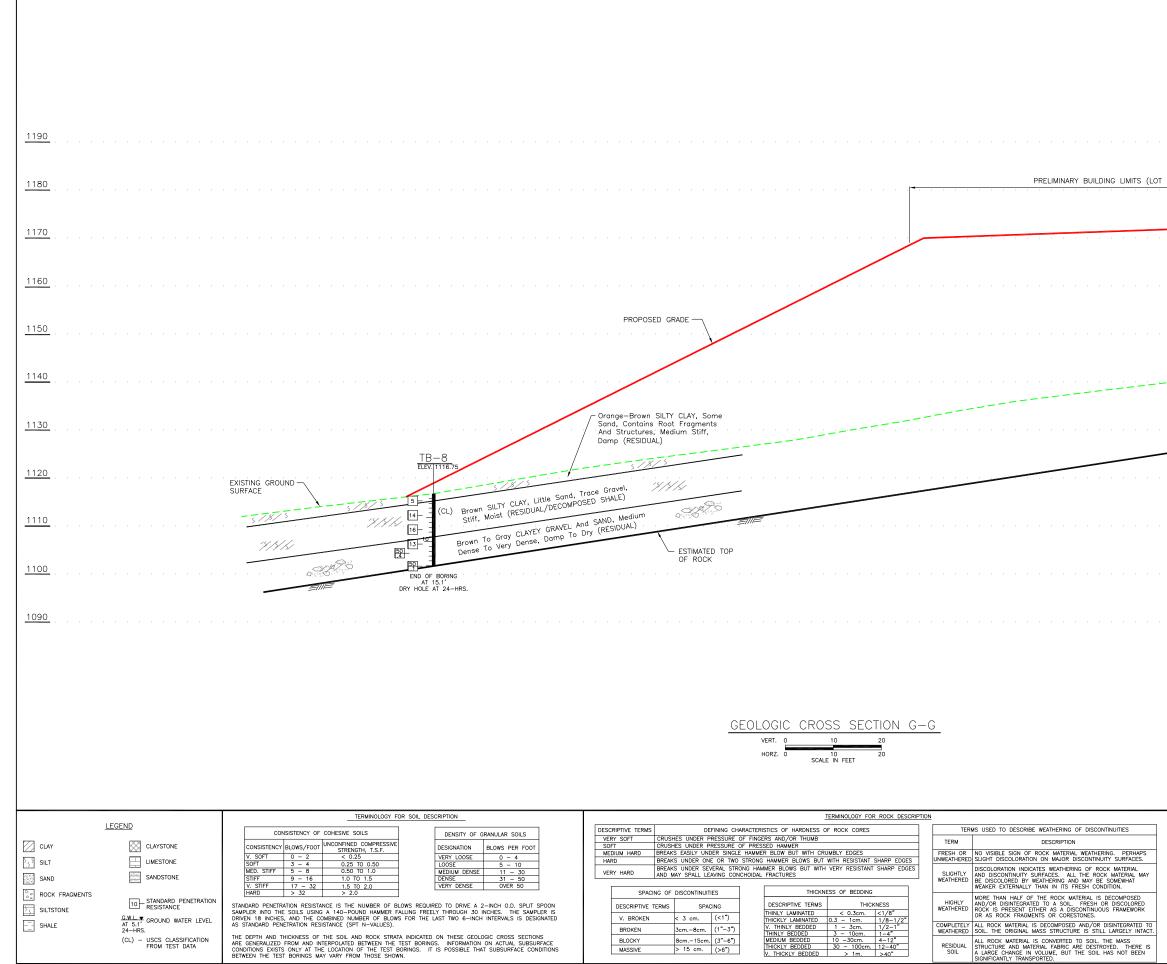
APPENDIX C Test Boring Location Plan, Geologic Cross-Sections and Roadway Profiles



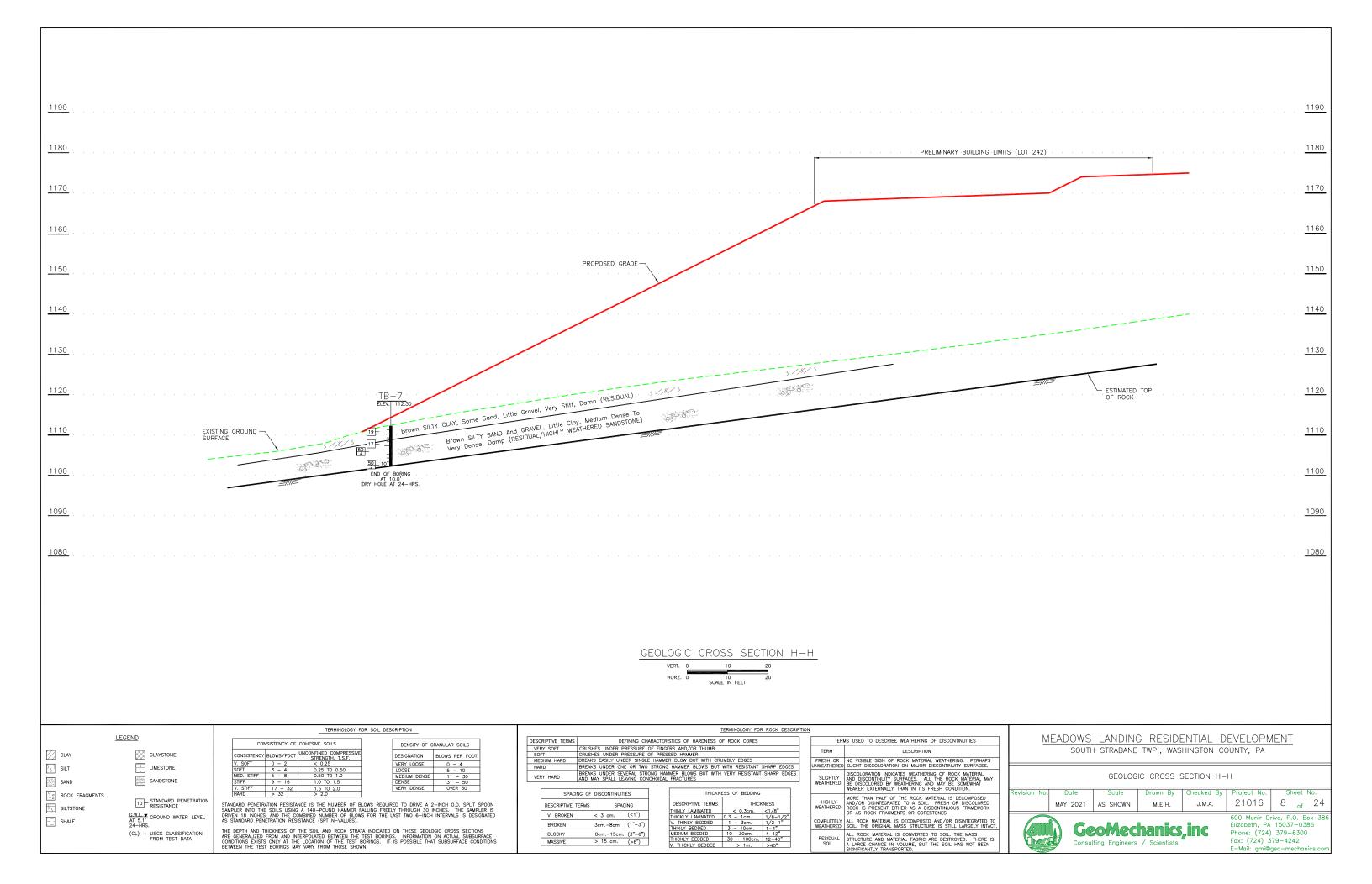

																				1240
																				<u>1230</u>
	 			-																1220
																				<u>1210</u>
6)	· · •																			<u>1200</u>
		_	_	_	_		• •													<u>1190</u>
					·						·									<u>1180</u>
(LOT 269)																				
(LUT 269)																				<u>1160</u>
																				<u>1150</u>
																				1140
					· ·															<u>1130</u>
																				<u>1120</u>
																				<u>1110</u>
																				<u>1100</u>
																				<u>1090</u>
M			1 1			D	EC	וחו		тіл	1		-\/		\cap				-	
111	EADC s															A	<u>''</u>		_	
		GE	:0L0	GIC	CRO	SS	SEC)NS	A-	-A .	AN[ן ר	3-1	8					
Revision No.	Dat MAY 2	2021	AS S	Scale SHOWI		м	wn E I.E.H			J.M	.A.		2	1 C)16	5	_	2	_ 0'	t No. f <u>24</u> Box 386
		Ge Consult	ting E) / Sc	n ienti	C sts	,		8		Eliz Pho Fax	abe one: :: ('	th, (7 724	PA (24) -) 3	15 3 379-	503 79- -42	7–0 630 42	386

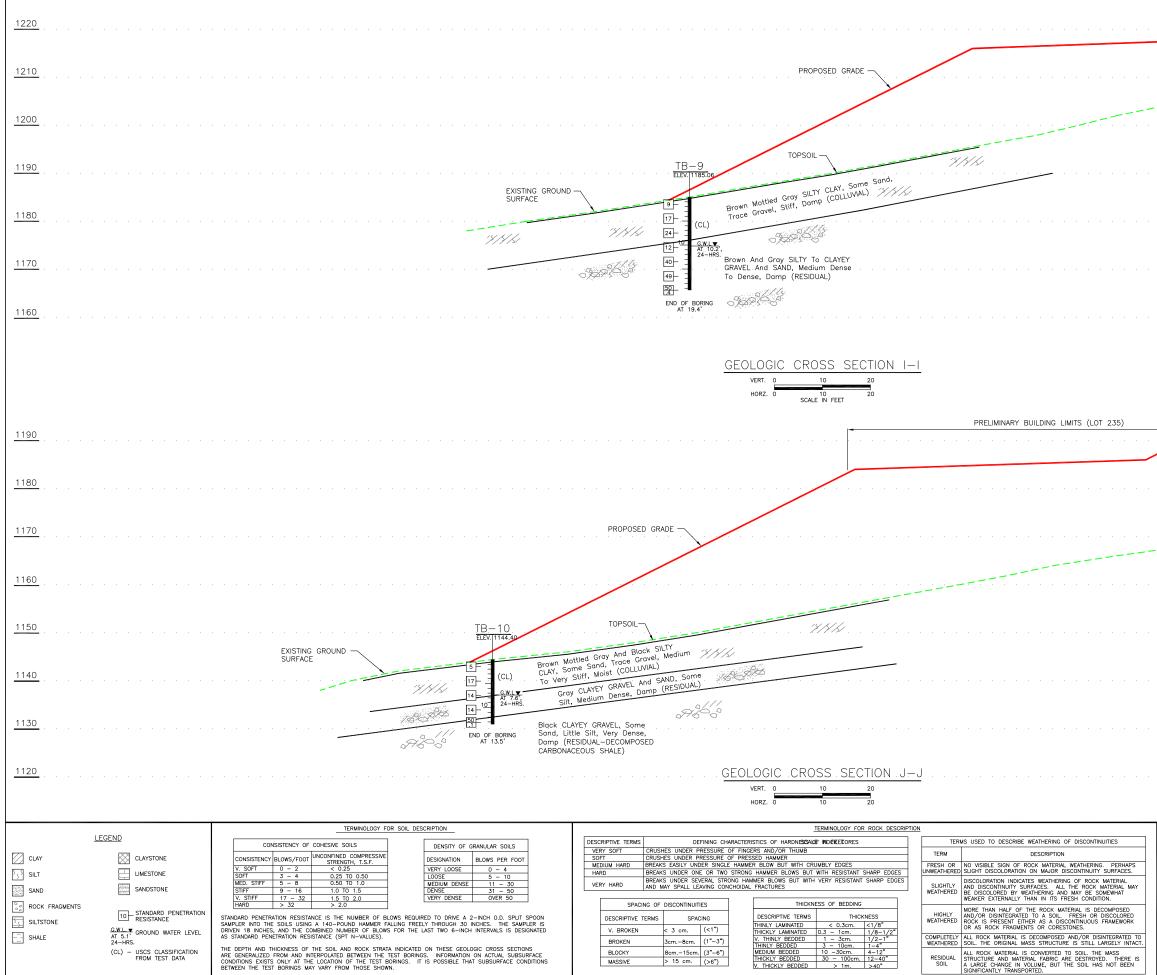


		<u>1230</u>
		1220
		1210
BUILDING (LOT 264)		1200
		1190
+ + 		1180
		1170
ESTIMATED TOP OF ROCK		1160
DSTONE Interbedded With Silty Shale, ninly Bedded, Broken To Massive, ium Hard		1150
AYSTONE, Indiscernible Bedding, Blocky To Massive,		1140
Gray Argillaceous LIMESTONE, Blocky To Massive, Medium Bedded, Hard		<u>1130</u>
		<u>1120</u>
		<u>1110</u>
		<u>1100</u>
MEADOWS LANDING RESIDENTIAL DEVELOPMI south strabane twp., washington county, pa	<u>ENT</u>	
GEOLOGIC CROSS SECTION C-C		
Revision No. Date Scale Drawn By Checked By Project No. MAY 2021 AS SHOWN M.E.H. J.M.A. 21016	Sheet <u>3</u> of	
GeoMechanics, inc	ve, P.O. 15037-0	Box 386 386

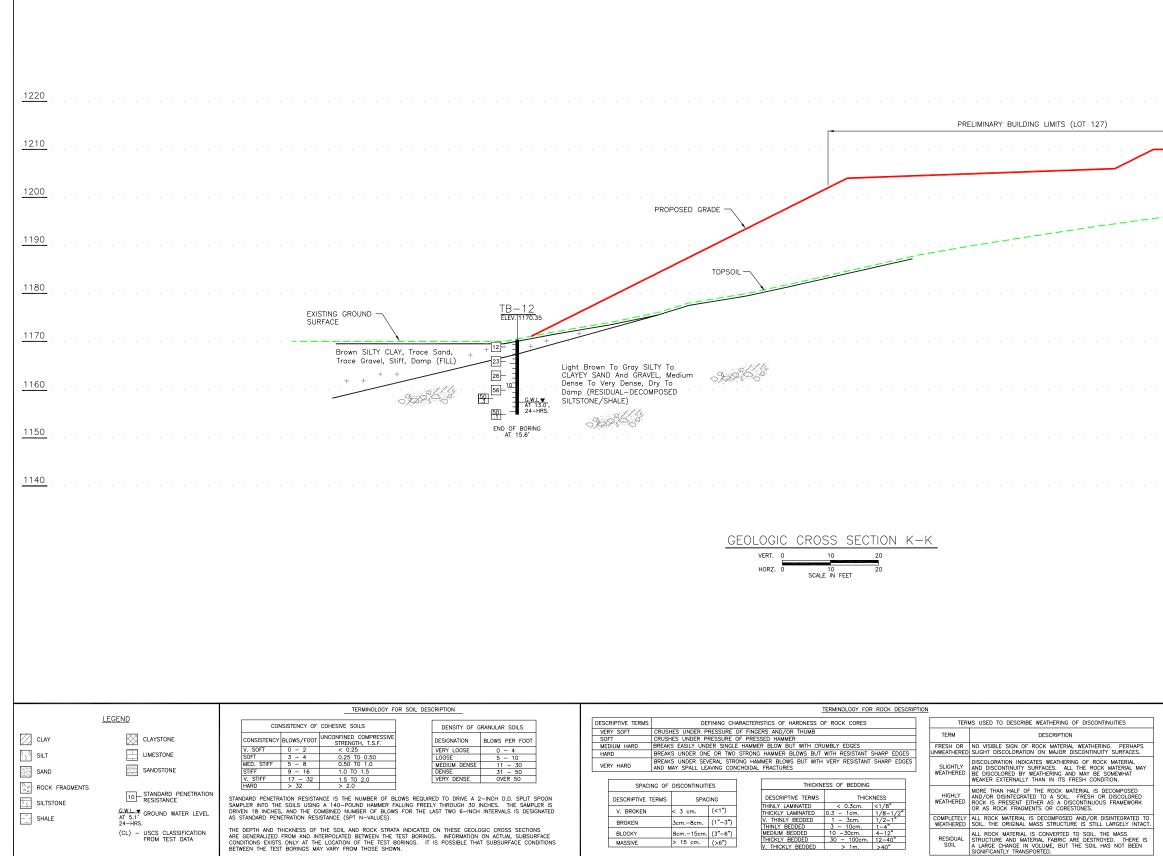


																													1230
																													1220
JILD	ING	ĻIM	IITS	(LC	TC	260	<u>)</u>								-1														1210
									_																				1200
	-	-	-																										
																		·											<u>1190</u>
G	ROI	JNI) s	UR	FA	CE-								. +	+	÷	+ .+												1180
									\ 	7																			1170
			نستت																										
																													1160
																													<u>1150</u>
																													1140
																													<u>1130</u>
																													<u>1120</u>
								•																					<u>1110</u>
																													<u>1100</u>
]			M	1E/	٩D	0	WS	5	LA		DI	NC	<u>}</u>	RE	ĒS	ID	E	NT.	IAL	_	DE	EV	EL	.0	PN	ΛE	NT	-	
╞						50		H	51					NP.									ιΥ, 	P	·A				
R	evis	ion	No.			ate 20				Scc SH	le)raw		Зу		Cheo	cked	зB		Pro	ojec 1 C						: No. r <u>24</u>
	(C	ons	ulti	o ng	M Enç	gine	C ers	ha	5 Sci	n enti	C sts	5 ₀	In	C			Eliz Pho Fax	abe one: :: ('	th, (7 724	PA 724] (1)	, 15) 3 379-	503 79- -42	7-0 630 42	Box 386 386 00 anics.com
		*	100	-																				3		,			

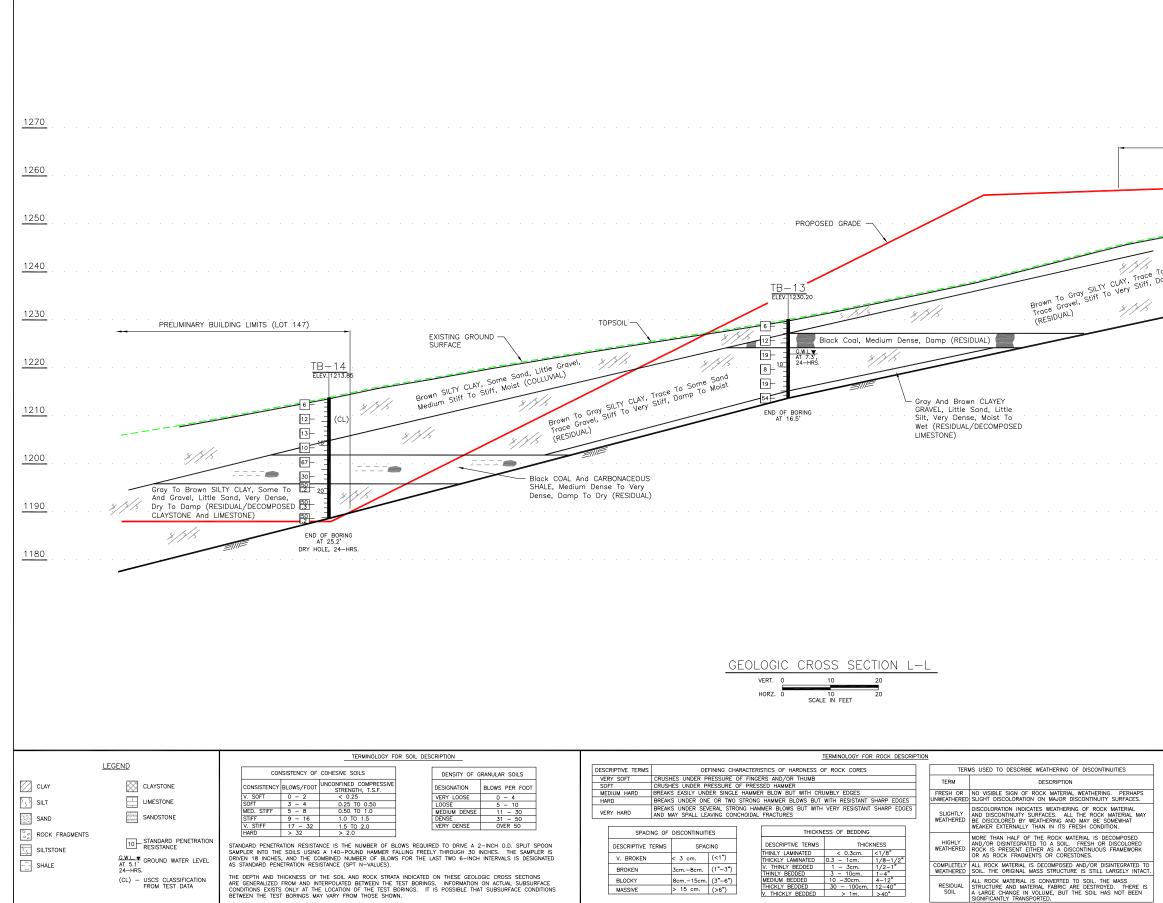


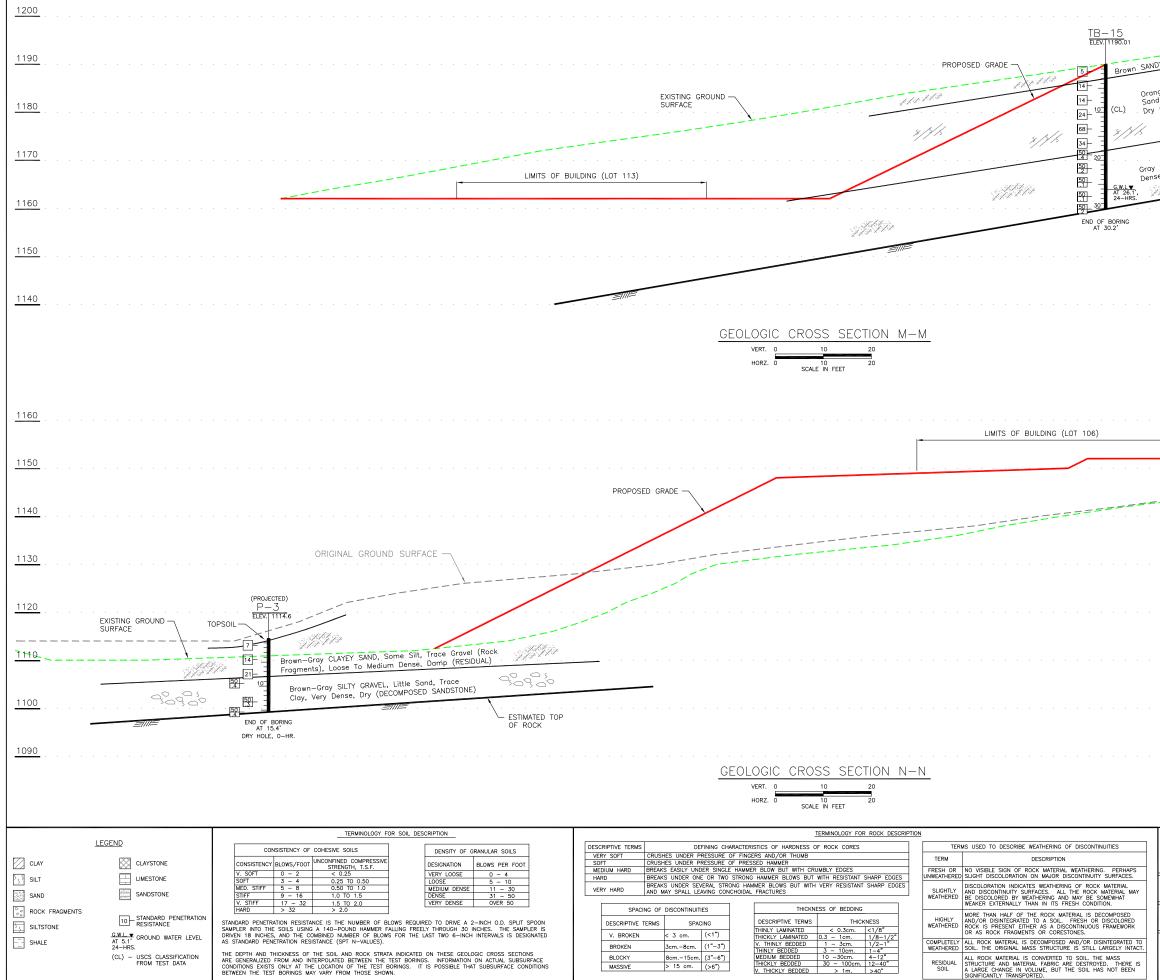


	PROPOSED GRADE	<u>1230</u>
		1220
	· · · · · · · · · · · · · · · · · · ·	
own SILTY CLAY, Little e Gravel, Very Stiff To p (RESIDUAL)	9/9/61 	<u> </u>
	131	1000
ery Dense,		<u> <u>1200</u></u>
L) Silt, Some Gravel, Very Dense, G Argillaceous Shale (RESIDUAL)	1357 	<u> </u>
D. TOP		<u>1180</u>
		<u>1170</u>
MEADOWS LA south str	NDING RESIDENTIAL DI rabane twp., washington co	EVELOPMENT unty, pa
	GEOLOGIC CROSS SECTION F-F	
	Scale Drawn By Checked By SHOWN M.E.H. J.M.A.	Project No. Sheet No. 21016 6 of 24
	Mechanics, inc Engineers / Scientists	600 Munir Drive, P.O. Box 386 Elizabeth, PA 15037−0386 Phone: (724) 379−6300 Fax: (724) 379−4242 E−Mail: gmi@geo-mechanics.com



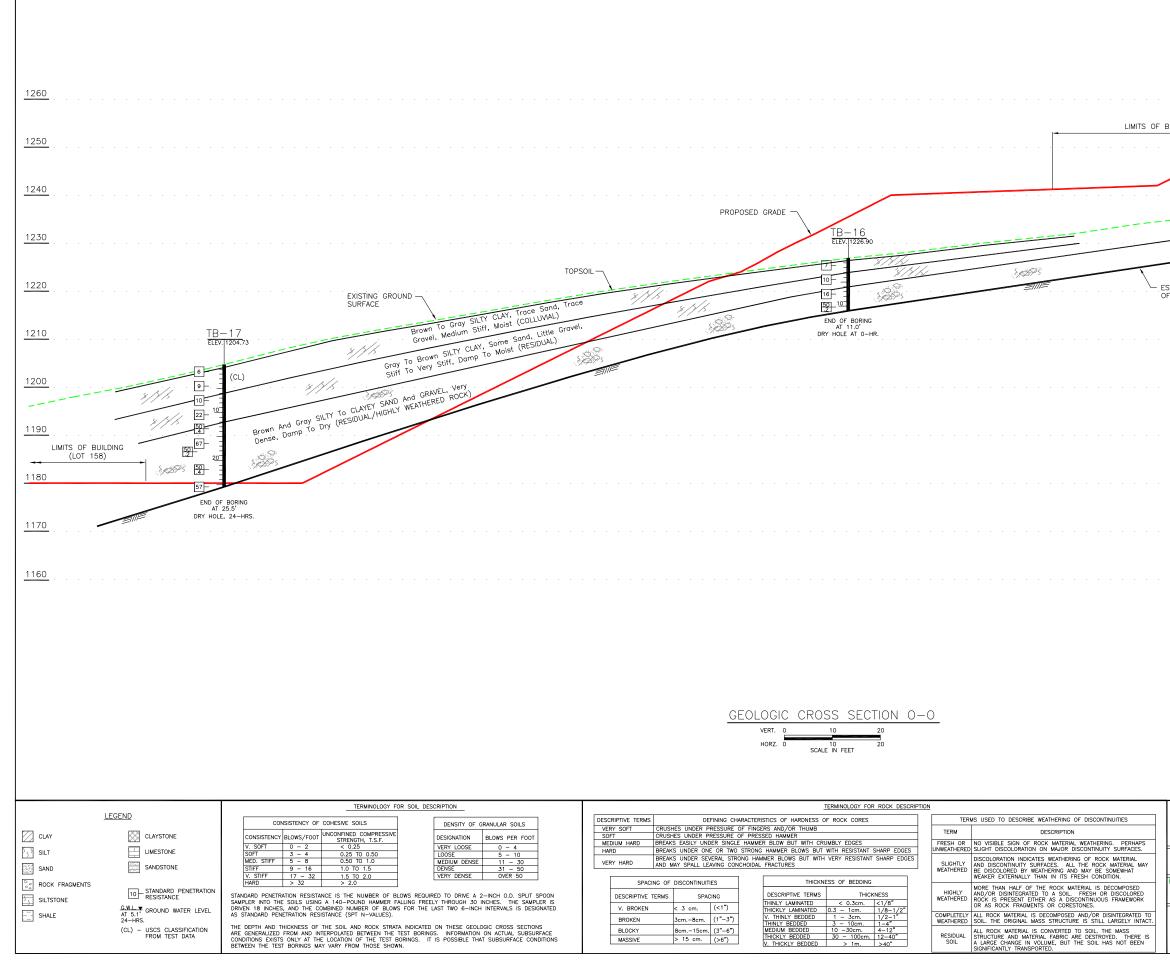
																									1190
																									1190
245)								-																	1180
	-																								1170
																									1160
																									1100
																									1150
																									1140
																									1130
			-	-		-	-																		
																									<u>1120</u>
																									<u>1110</u>
																									1100
																									1090
				\\/																				_	
		IEA	s		S TH	ST	'RA	BAI	NE	TV	VP.	, \	VAS	SHI	NG	TO	- N (EL TY,	.О Р	A	/IE		-	
Revision	No	1	Date		-		GE Sca		DGI			n E					I G		lies	t N			0	100	: No.
revision	1 110.		Y 20			AS			1			E.H				.М./		2	10)16	5	_	7	01	
		D	0	G	C ulti		M Eng	C	C	ha ⁄	Sci	enti	C sts	5,	n	C		Eliz Pho Fax	abe one: :: ('	th, (7 724	PA (24) () 3	15 3 579-	03 79- -42	7-0 630 42	Box 386 386 00 anics.com



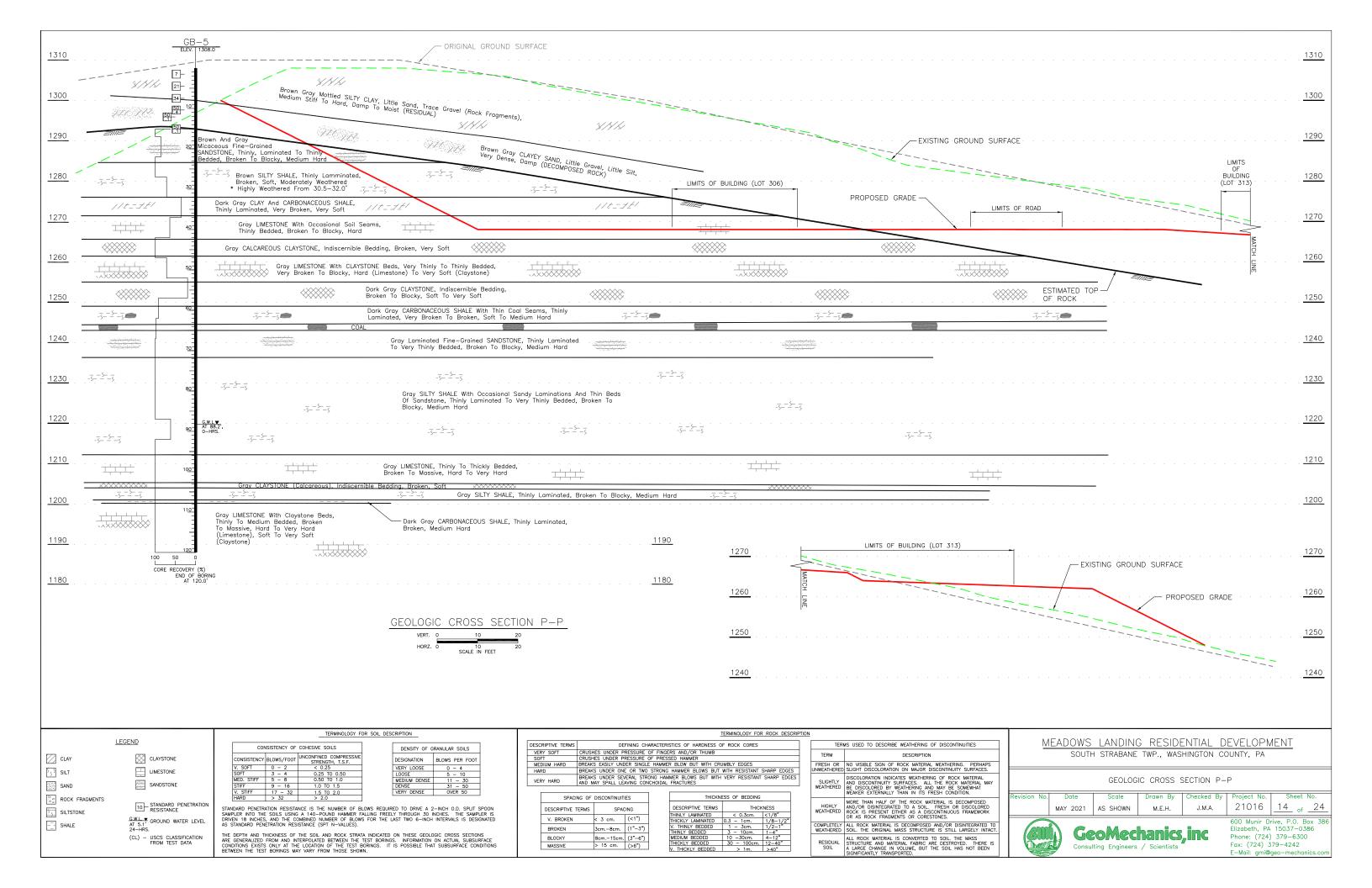

																												1220
																												<u>1210</u>
. 																												<u>1200</u>
																												<u>1190</u>
																												<u>1180</u>
																												<u>1170</u>
																												<u>1160</u>
																												1100
				÷	÷			-																				1190
																												<u>1180</u>
				. –	<u>.</u>			_																				<u>1170</u>
																												<u>1160</u>
																												<u>1150</u>
																												1140
																												<u>1130</u>
																												1120
			M	IE/	٩D	0	WS	с Б	LA	N N	DI	NC NE) די	RE	ES	ID	E۱		IAI	 D	EV	EL	_0	PN	ЛE	N	Γ	
╞																				 				~				
P	evie	ion	No.			ate		GE		.OG Sca		CF		SS				NS Chec				ojec			1	0	hee	t No.
						20				SH		١			E.H				I.M.	1	2	10	01	6		9	_ 0	f <u>24</u>
	(2 ulti		Eng	_	ers	h	Sci	enti	C ists	5,	Î			Eliz Phi Fax	abe one (; (eth, : (7 724	PA 724 4) 3	4 18) 3 379	503 79- -42	7–0 -63 242	Box 386 0386 00 anics.com

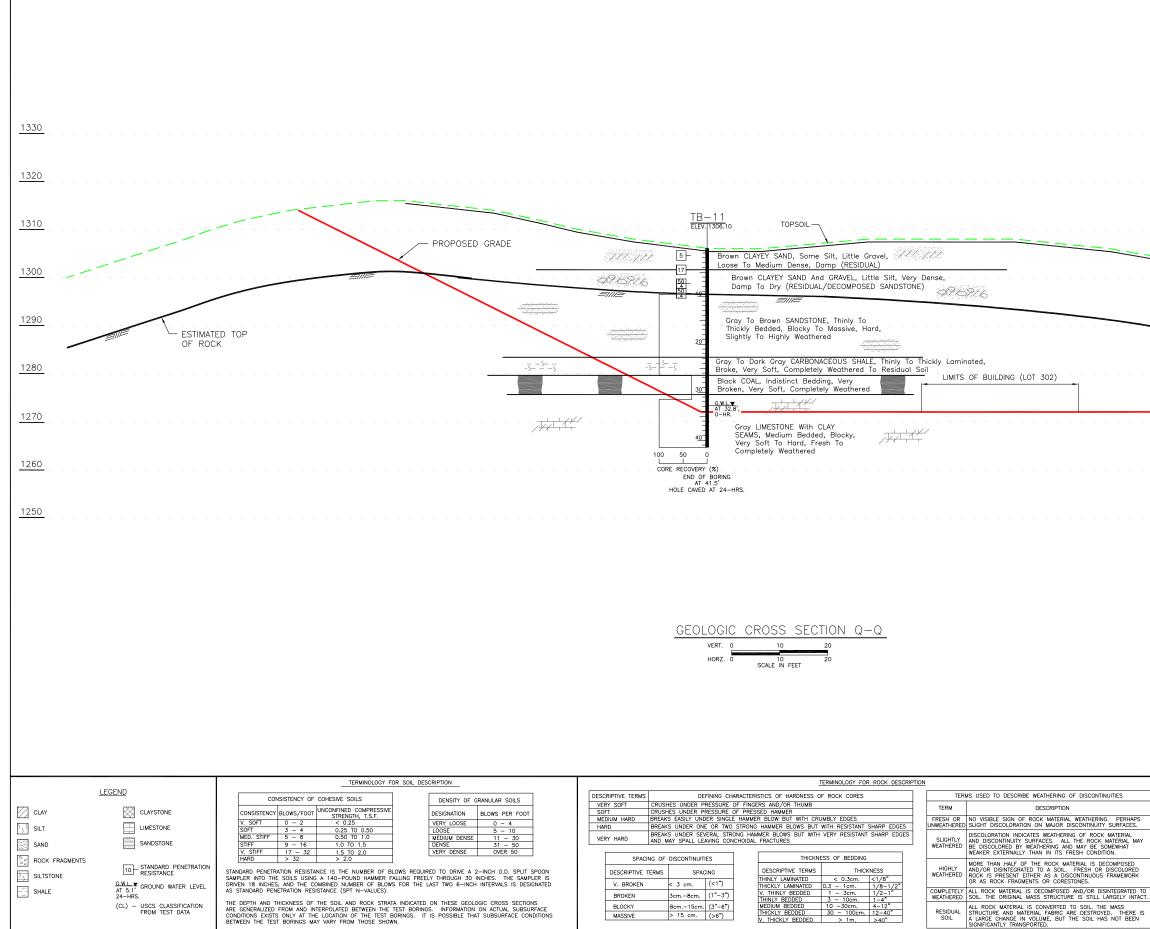
			<u> </u>
	-		<u>1190</u>
			1180
			<u> </u>
			<u> <u>1170</u></u>
			<u> </u>
			<u> </u>
MEAD	OWS LANDING	G RESIDENTIAL D twp., washington cc	EVELOPMENT DUNTY, PA
	GEOLOG	IC CROSS SECTION K-	К
	ate Scale 2021 AS SHOWN	Drawn By Checked By M.E.H. J.M.A.	Project No. Sheet No. 21016 <u>10</u> of <u>24</u>
	GeoMec Consulting Engineers	hanics, inc / Scientists	600 Munir Drive, P.O. Box 386 Elizabeth, PA 15037-0386 Phone: (724) 379-6300 Fax: (724) 379-4242 E-Mail: gmi@geo-mechanics.com

		G	20	M	eers ,	13	m	C	5,					600 Eliz Pho Fax) M abe one: : (7	unir th, (7 724	· Di PA 24)) 3	rive 15 379-	, P 503 79- -42	.0. 7–0 630	Box 386 386
Revision No.		ate 2021	46	GEO Scale		Dra	ROS	Ву		hec		зB		Pro	ojec 10						t No. f _24_
<u>N</u>	IEAD	OWS SOUT	<u>SL</u> Th si	AND trab	ING ane	R Twf	<u>ES</u> P., 1	NAS	<u>EN</u> Shi	VT NG	IAL TO	- N	DE CO	EV UN	EL ty,	Of P,	⊃ <u>N</u> A	1E	NT	-	
																					<u>1180</u>
																					<u>1190</u>
																					1200
																					1210
					F ROC	к :															1220
o Some Sand amp To Moist			-		STIMAT	ED -	TOP	-													1230
some sand	 																				1240
																-					1250
LIMITS	OF BU	ILDING	(LOT	314)										_	·	-					1260
																					1270

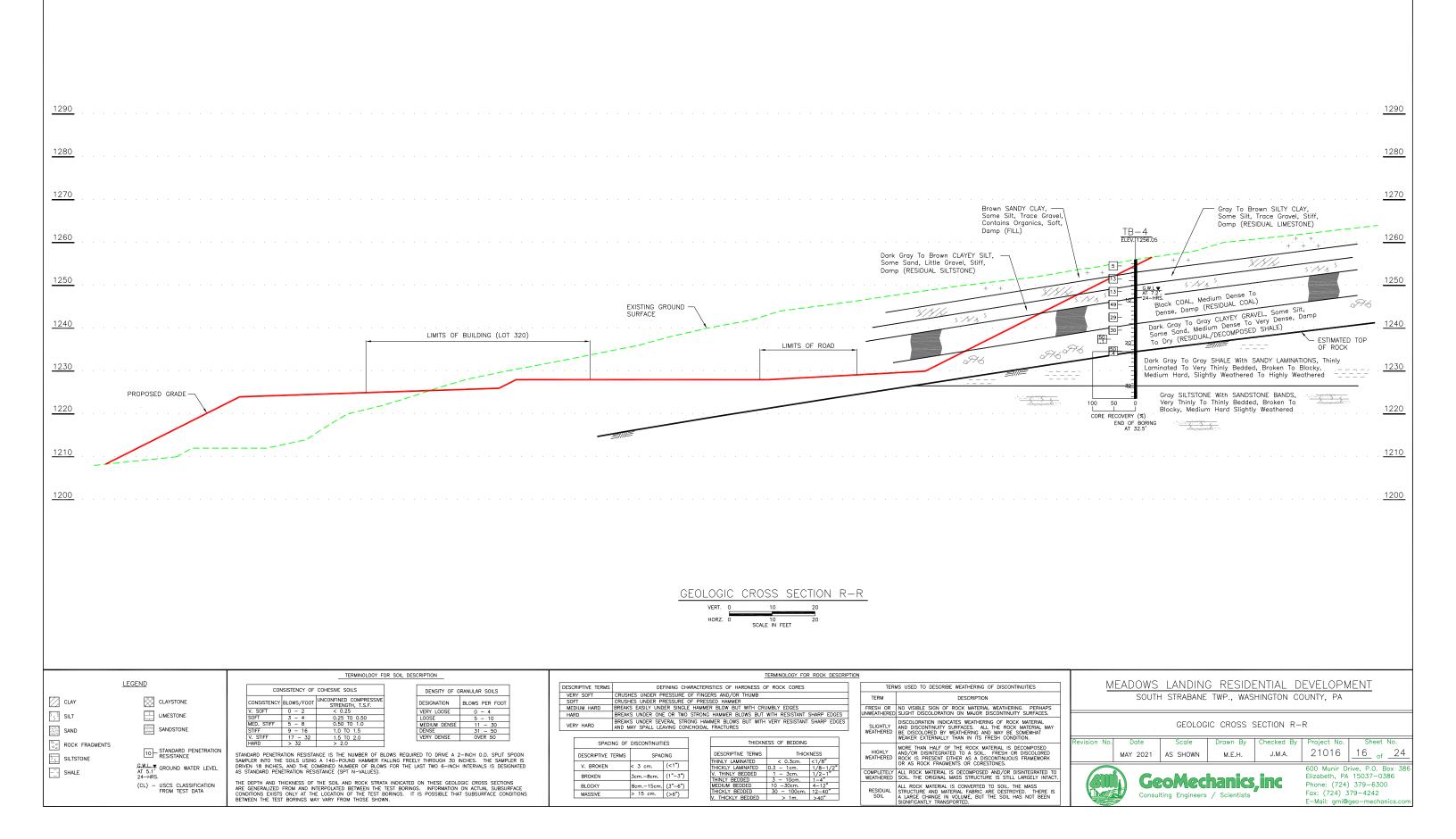


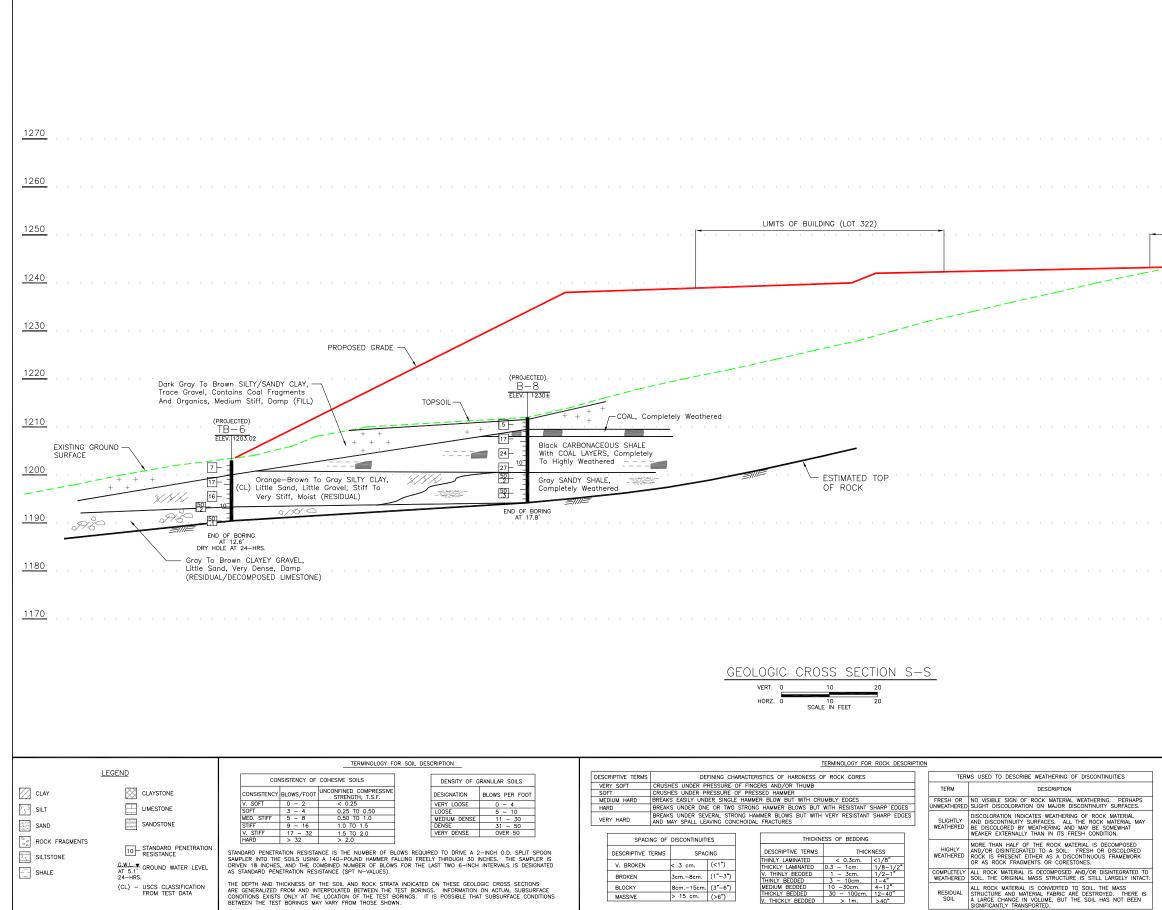
	1200
DY CLAY, Little Gravel, Little Silt, Medium Stiff, Damp (COLLUVIAL) nge-Brown SILTY CLAY, Some d, Trace Gravel, Stiff To Hard, or FGIDUAL)	<u>1190</u>
(Mean grades and the second se	1180
/ CLAYEY SAND, Some Gravel, Little Silt, Very se, Damp To Dry (RESIDUAL/DECOMPOSED SHALE)	<u>1170</u>
ESTIMATED TOP	<u>1160</u>
	<u>1150</u>
	<u>1140</u>
	1160

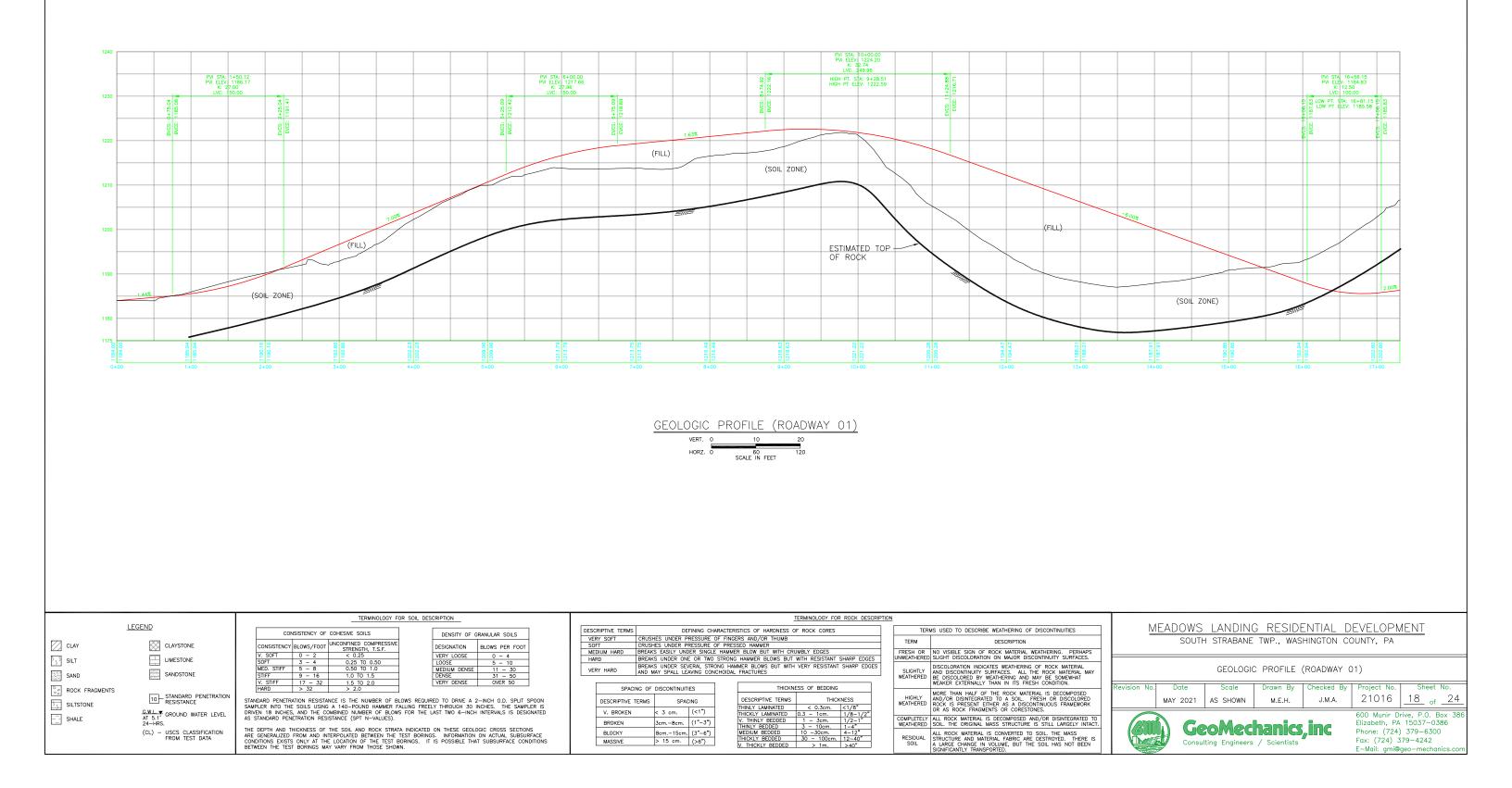

						<u>1160</u>
			-	LIMITS OF	ROAD	
						1150
		=====	=====			
	=====.					
						1140
						1130
						· · · · <u>· · · · · · · · · · · · · · · </u>
						1100
						<u>1120</u>
						1110
						1100
						1090
						· · · —
	MEADOWS	+ STRABANE				
	50011	- SINADANL	1111., WAG		550NTT, 1'A	
		EOLOGIC CR				
Revision N		Scale	Drawn By	Checked By	Project No.	Sheet No.
	MAY 2021	AS SHOWN	M.E.H.	J.M.A.	21016	<u>12</u> of <u>24</u>
					600 Munir D	Drive, P.O. Box 386 A 15037-0386
	GG	oMec	nanico			370 6300

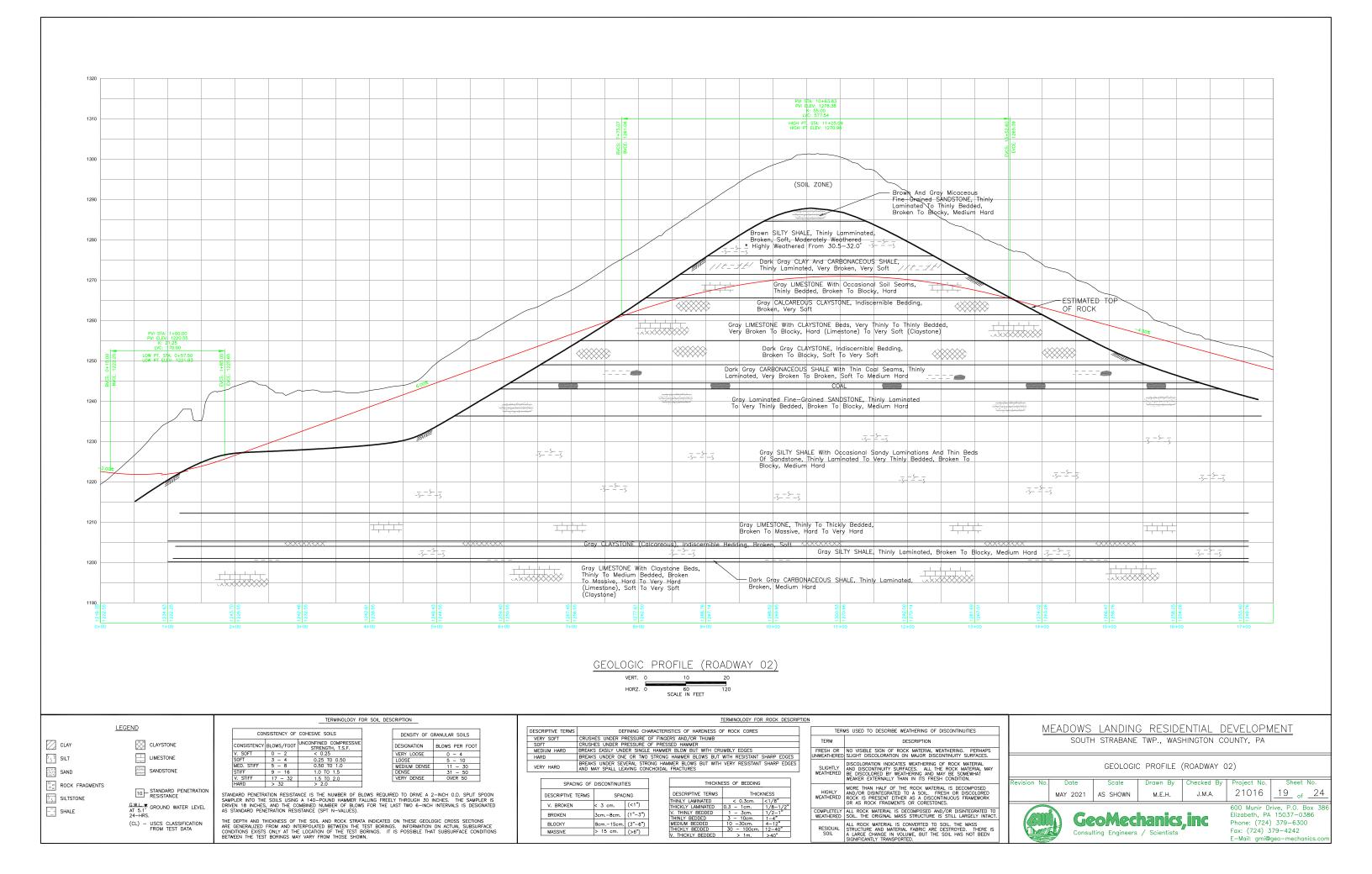

GeoMechanics, inc Consulting Engineers / Scientists

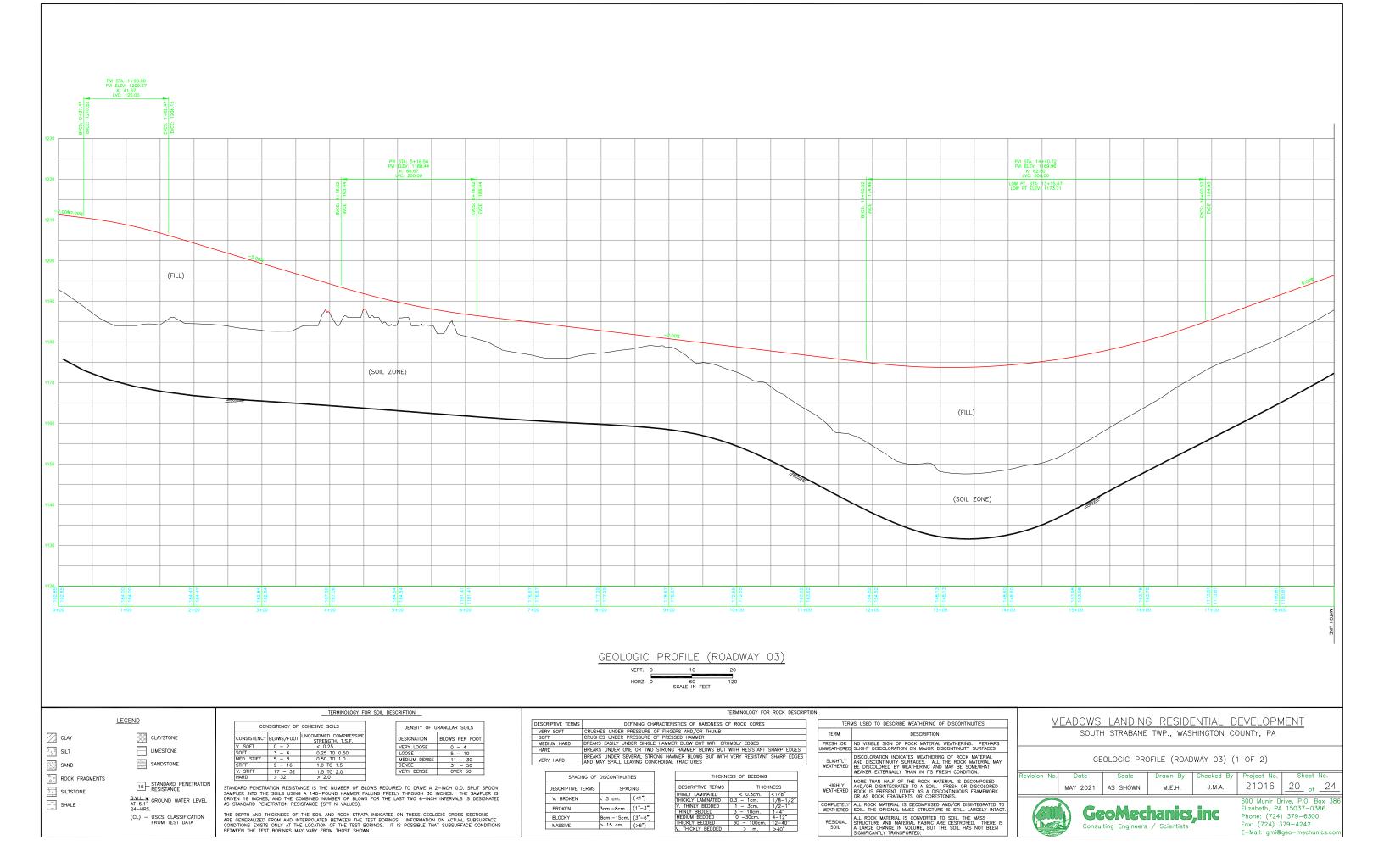
E-Mail: gmi@geo-me

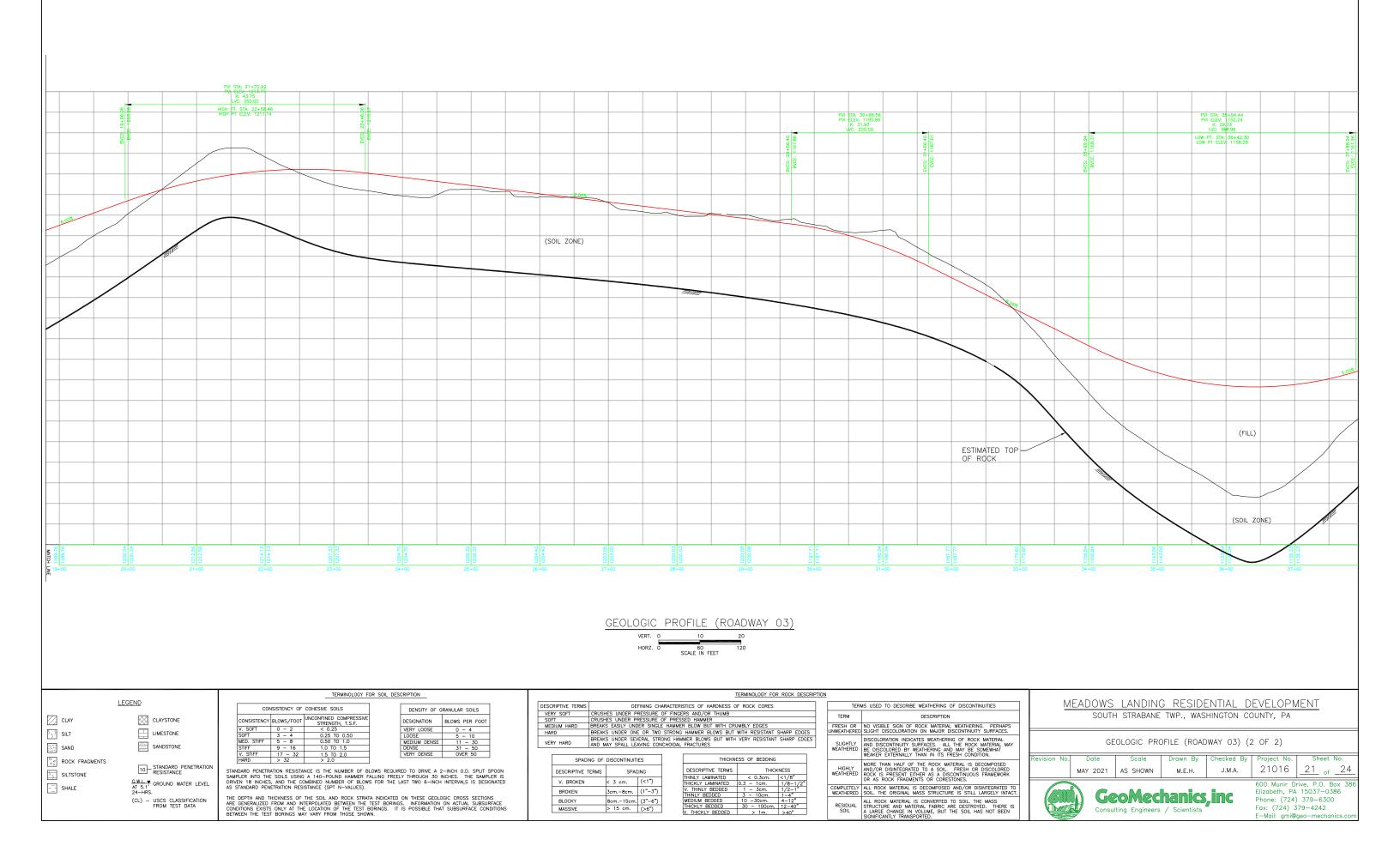


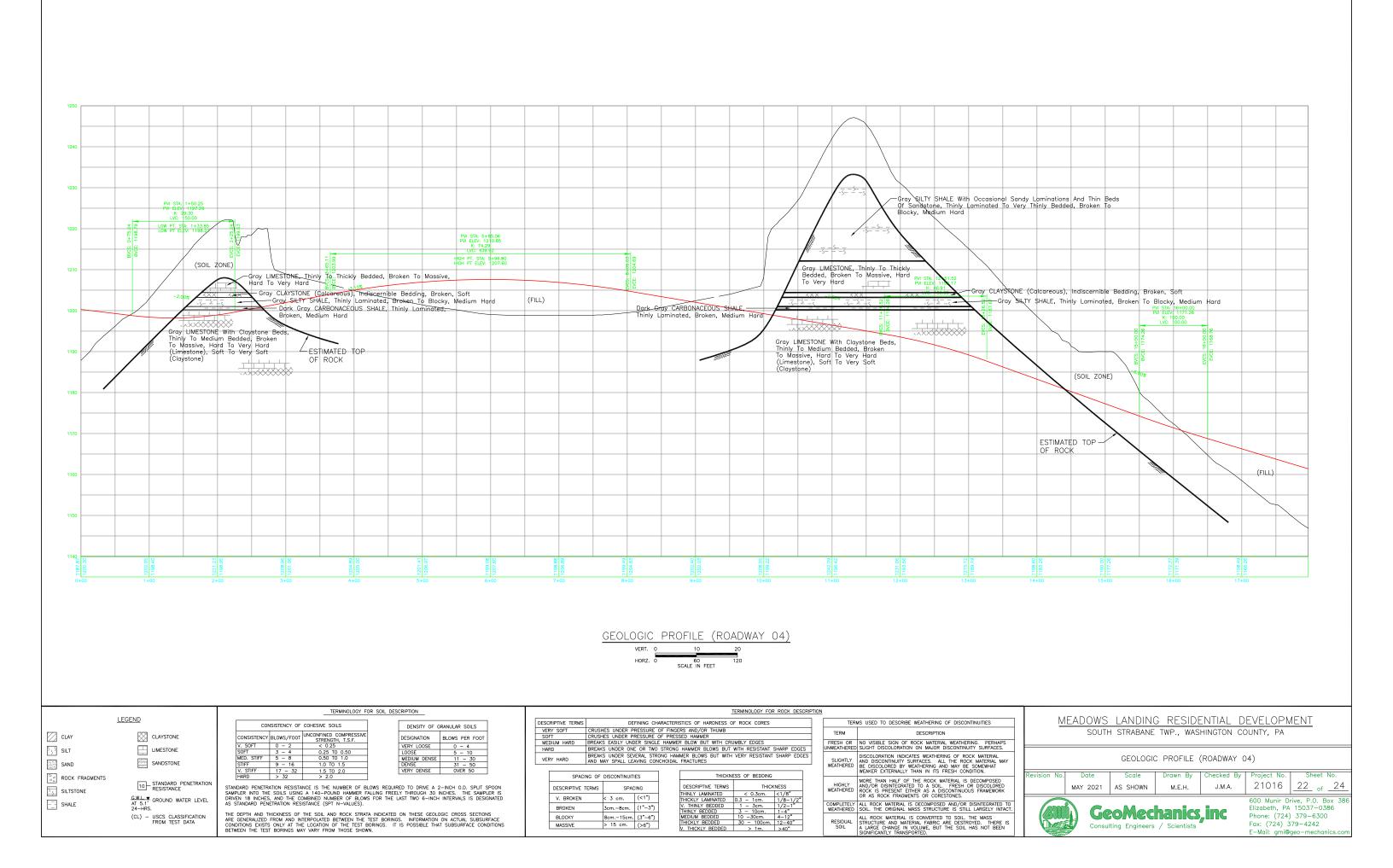

																							C	LIN:	IITS -DE	_ <u>1260</u> OF _SAC
BUILDING	(LOI		')						1.																	1250
																				-			-	-		
				-					- <u>-</u> -																	1240
.		-																								1230
STIMATED DF ROCK	TOP																									1220
																										1210
																										<u>1200</u>
																										<u>1190</u>
																										<u>1180</u>
																										<u>1170</u>
																										<u>1160</u>
	M	ΞΑ[00 S	WS TUC	S TH	L/ ST	<u>N</u> Ra	DI Bai	NC NE) TV	RE vp.	<u>ES</u> , \	ID Nat	EN SHI	NT NG	IAI to	 N	DE co	EV UN	EL ty,	<u>_0</u> . P	<u>PN</u> A	1E	<u>N</u> 7	-	
							GE	OL	DGI	С	CR	:0S	S	SE	CTI	0	I C)–()							
Revision	No.		Date 1 20				Sca SH(1	C		n E.H		(Cheo C	ckeo I.M.		y			et №)1(_1			t No. f <u>24</u>
			C	G	2 ultir	O ng	M Eng	gine	C	h	Sci	enti	C	5, İ	Ĩ	C			Eliz Pho Fax	abe one: :: (eth, : (7 724	PA (24) -) 3	15 3 79-	503 79- -42	7-0 630 42	Box 386 0386 00 anics.com

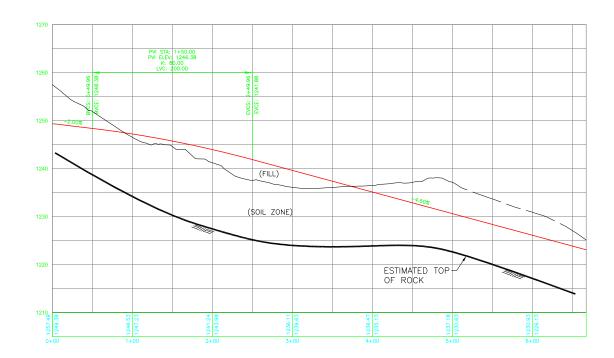


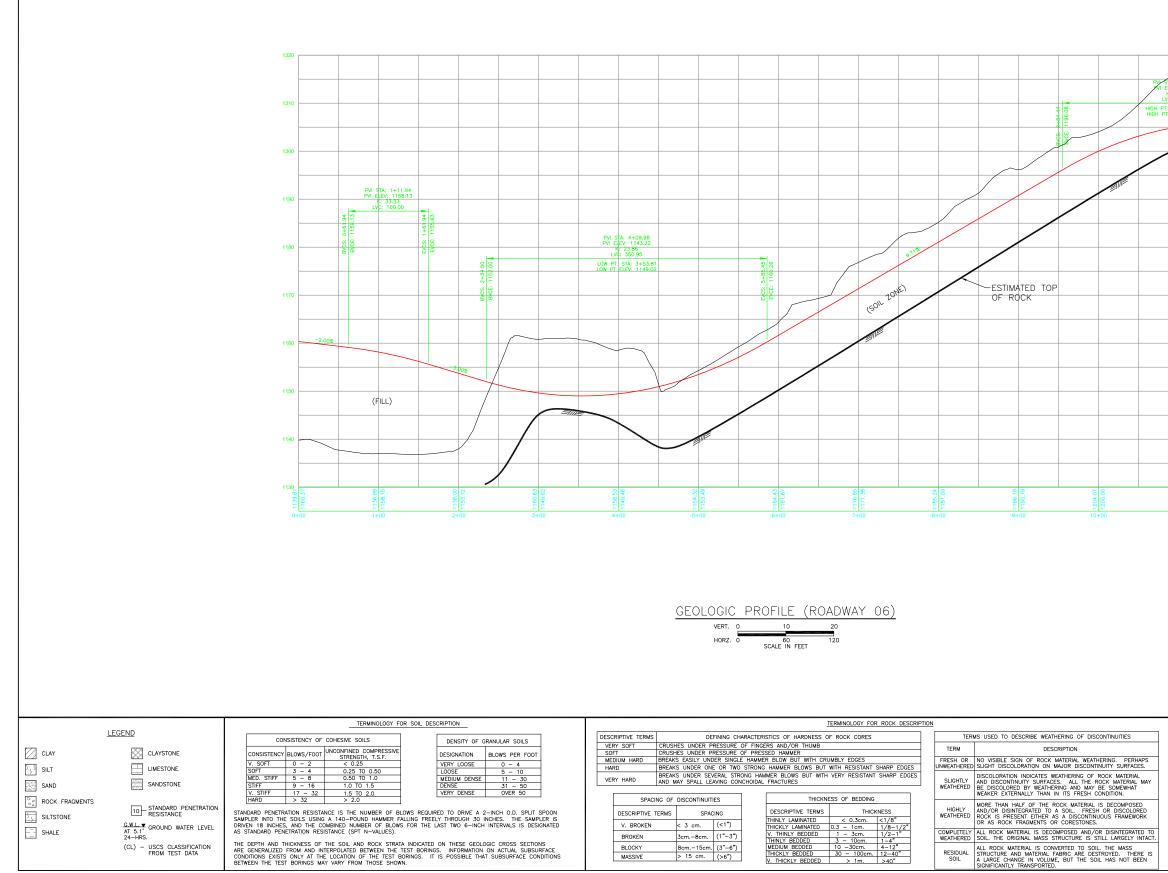

	<u>1330</u>
EXISTING GROUND SURFACE	
	1290
LIMITS OF ROAD	1280
MEADOWS LANDING RESIDENTIAL I south strabane twp., washington c	DEVELOPMENT county, pa
GEOLOGIC CROSS SECTION Q	-
Revision No. Date Scale Drawn By Checked By MAY 2021 AS SHOWN M.E.H. J.M.A.	Project No. Sheet No. 21016 15 of 24
GeoMechanics, inc Consulting Engineers / Scientists	600 Munir Drive, P.O. Box 386 Elizabeth, PA 15037-0386 Phone: (724) 379-6300 Fax: (724) 379-4242 E-Mail: gmi@geo-mechanics.com

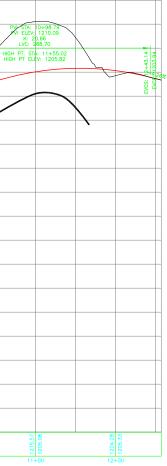




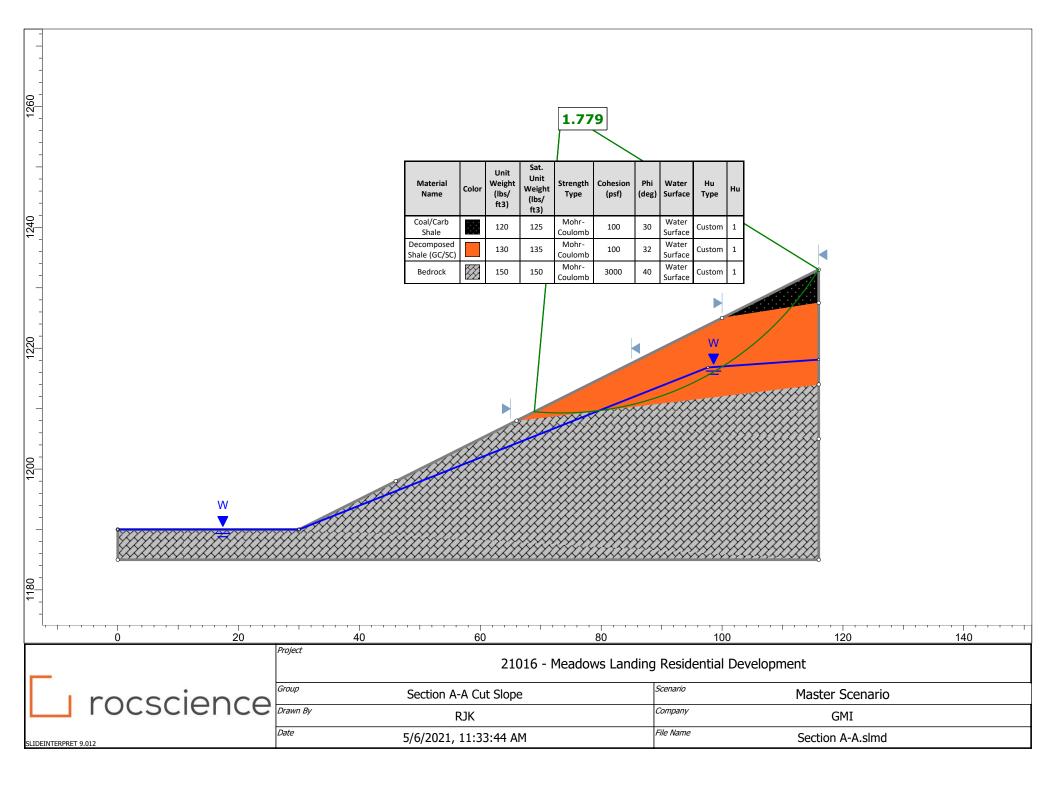

																														<u>1270</u>
																														1260
	L	<u>.IMI</u>	TS	OF	RO	AD			. 			_ i_				-		-		-	-									1250
	-																												• •	<u>1240</u>
																														<u>1230</u>
																														1220
																														<u>1210</u>
																													• •	1200
																													• •	<u>1190</u>
																													• •	<u>1180</u>
																													• •	<u>1170</u>
T																														
				M	EA	<u>_</u>	00 50	VS UTI	H	LA Stf	N E RAE) \ ban 	IE	F TW	≺Е Р.,	SI W	DE 'AS	<u>-</u> N hin	II/ IGT	AL On	C)Ε οι	VE INT	<u> </u>	JF PA	'M `	E١			
													GI					SEC	CTIC	Л	S-									
	Rev	isio	n I	No.	м	Dc AY	nte 202	21	A		icale SHO				awr M.E		y	Cł		ked M.A.			Proj 21	ject 1 O			_1			No. 24
-)	Co	J Insu	2C Iltin	D Ig E	ngi	2(nee	C rs	13 / s) Scie	ntis	d s	,	n	3		F	liza Phor 'ax:	ibet ne: (7	h, (72 24)	PA 24) 31	15) 37 79-	037 9-6 424	-00 630 12	3ox 386 386 0 nics.com

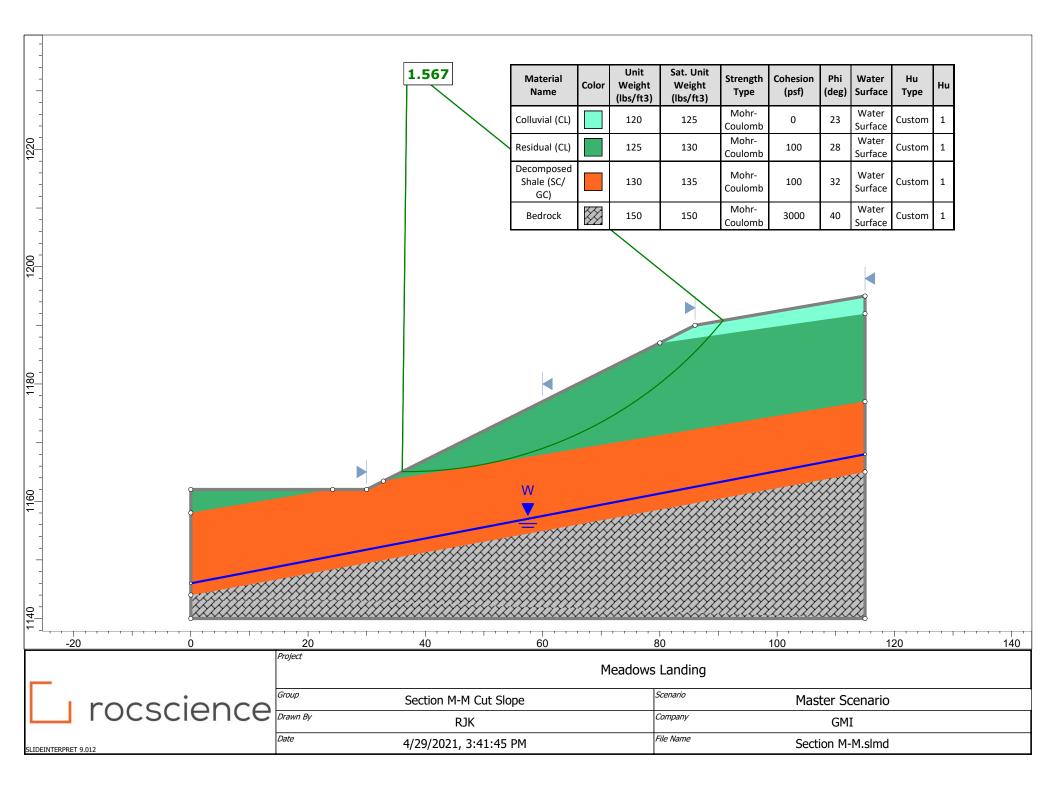


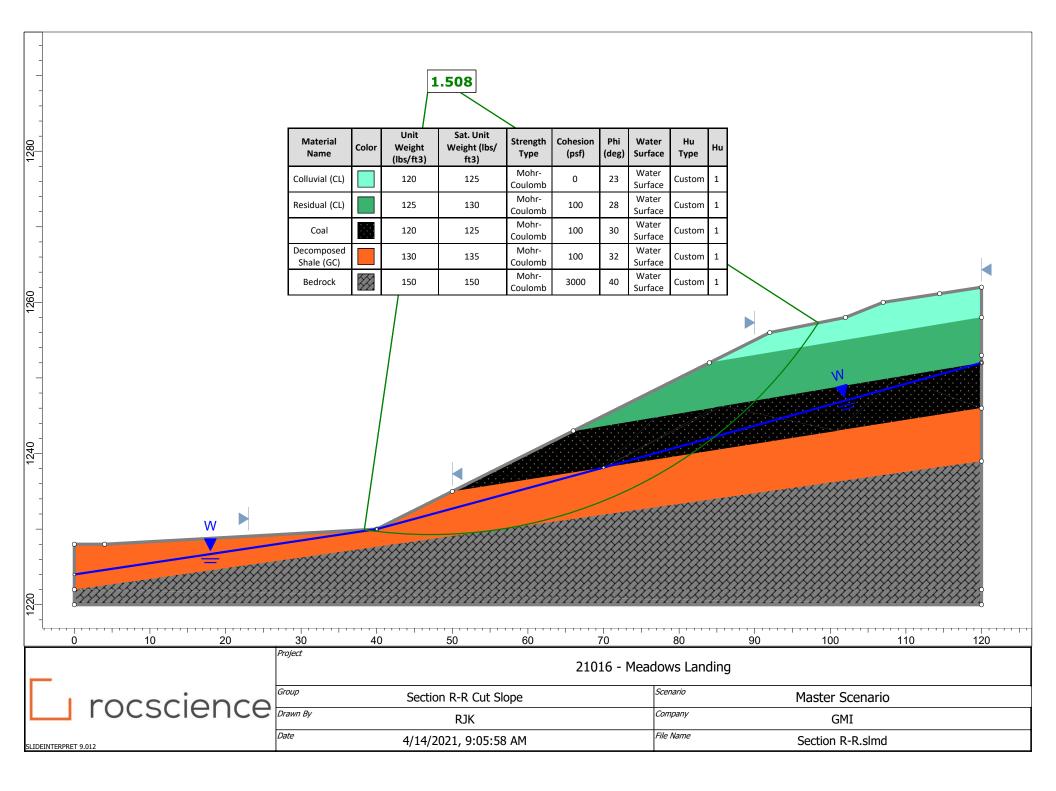


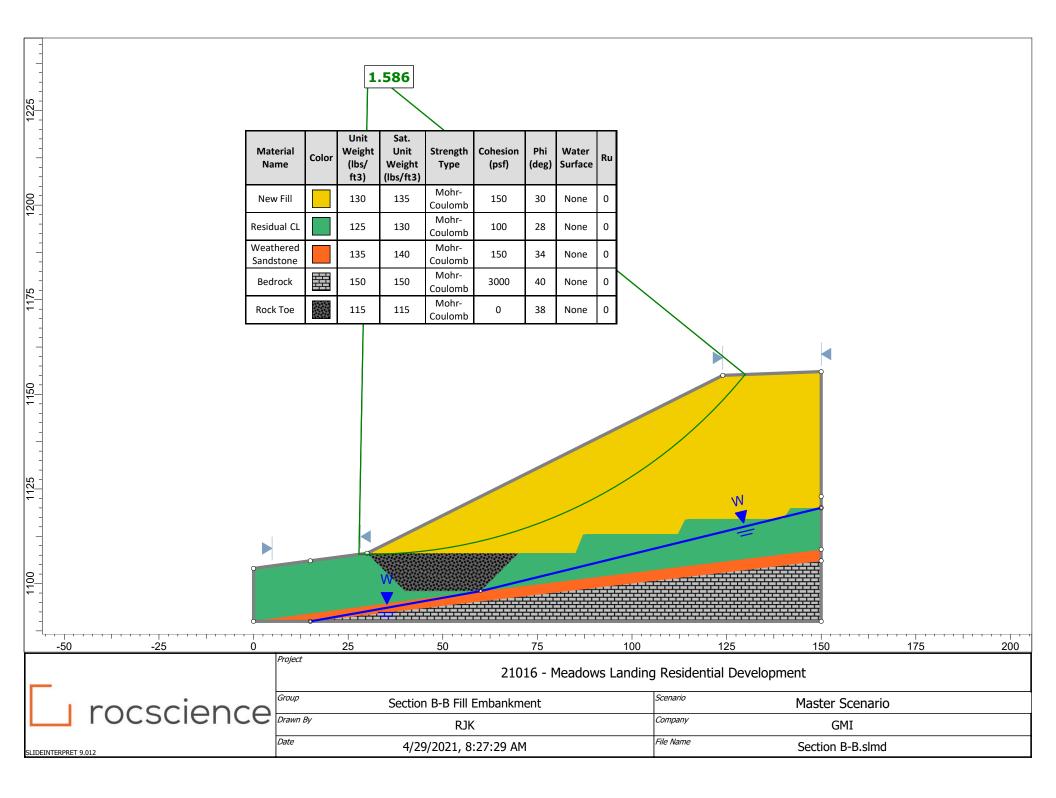


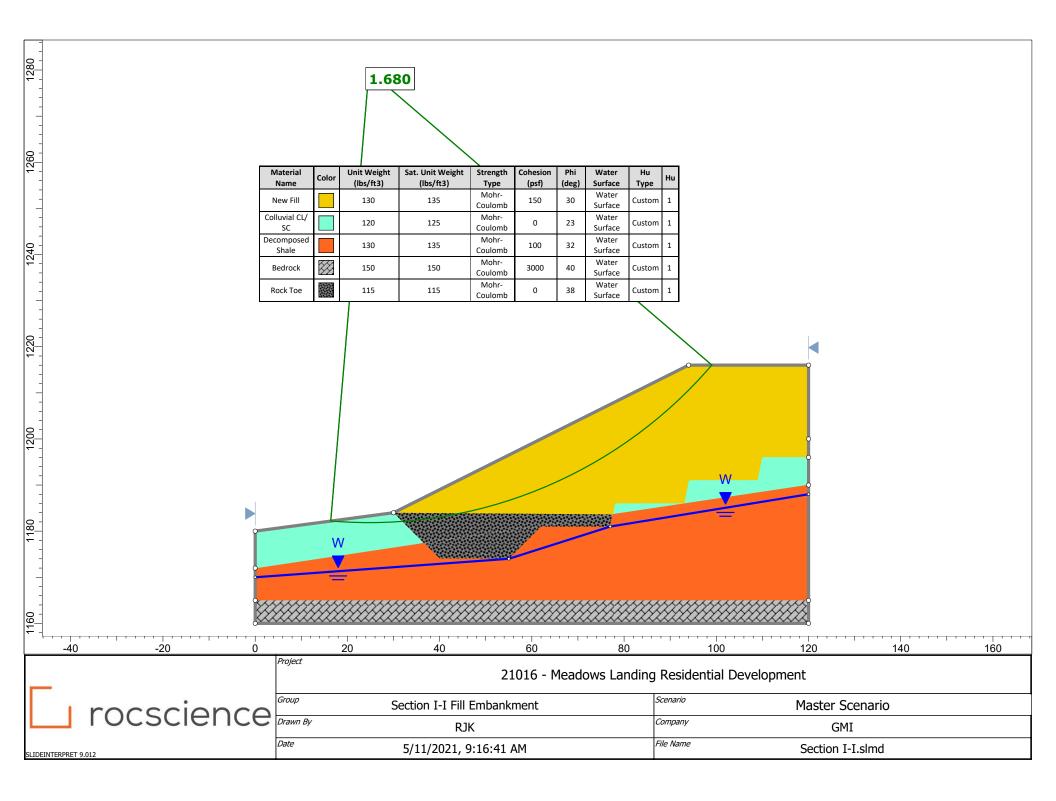
GEOLOGIC PROFILE (ROADWAY 05)

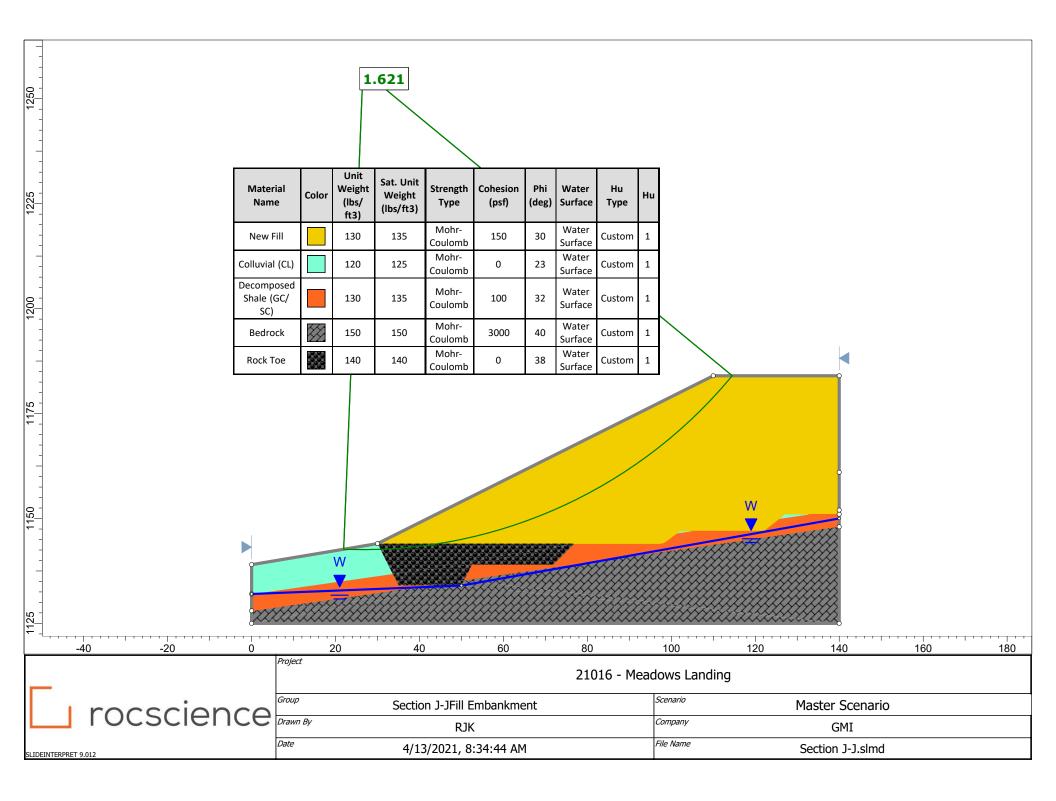

		TERMINOLOGY FOR SOIL DESCRIPTION										
	LEGEND	CONSISTENCY OF COHESIVE SOILS DENSITY OF	CRANULAR SOLLS	DESCRIPTIVE TERMS DEFINING CHARA	CTERISTICS OF HARDNESS OF ROCK CORES	TE	RMS USED TO DESCRIBE WEATHERING OF DISCONTINUITIES	MEADOWS LANDING RESIDENTIAL DEVELOPMENT			<u>eni</u>	
CLAY	CLAYSTONE	CONSISTENCY BLOWS/FOOT UNCONFINED COMPRESSIVE STRENGTH, T.S.F. DESIGNATION	DENSITY OF GRANULAR SOILS DESIGNATION BLOWS PER FOOT	VERY SOFT CRUSHES UNDER PRESSURE OF SOFT CRUSHES UNDER PRESSURE OF	PRESSED HAMMER	TERM	DESCRIPTION	SOUTH STRABANE TWP., WASHINGTON COUNTY, PA				
		V. SOFT 0 - 2 < 0.25 VERY LOOSE	0 - 4		AMMER BLOW BUT WITH CRUMBLY EDGES	FRESH OR	NO VISIBLE SIGN OF ROCK MATERIAL WEATHERING. PERHAPS D SLIGHT DISCOLORATION ON MAJOR DISCONTINUITY SURFACES.					
SAND		SOFT 3 - 4 0.25 T0 0.50 LOOSE MED. STIFF 5 - 8 0.50 T0 1.0 MEDIUM DENSE STIFF 9 - 16 1.0 T0 1.5 DENSE	MEDIUM DENSE 11 - 30 DENSE 31 - 50		HAMMER BLOWS BUT WITH VERY RESISTANT SHARP EDGES	SLIGHTLY	DISCOLORATION INDICATES WEATHERING OF ROCK MATERIAL AND DISCONTINUITY SURRACES. ALL THE ROCK MATERIAL MAY BE DISCOLORED BY WEATHERING AND MAY BE SOMEWHAT	GEOLOGIC PROFILE (ROADWAY 05)				
ROCK FRAGMENTS		V. STIFF 17 – 32 1.5 TO 2.0 HARD > 32 > 2.0	OVER 50	SPACING OF DISCONTINUITIES	THICKNESS OF BEDDING		WEAKER EXTERNALLY THAN IN ITS FRESH CONDITION.	Revision No.	Date Scale		ed By Project No.	
SILTSTONE	10- STANDARD PENETRATION RESISTANCE	SAMPLER INTO THE SOILS USING A 140-POUND HAMMER FALLING FREELY THROUGH 30	NG FREELY THROUGH 30 INCHES. THE SAMPLER IS IN THE LAST TWO 6-INCH INTERVALS IS DESIGNATED	DESCRIPTIVE TERMS SPACING	DESCRIPTIVE TERMS THICKNESS THINLY LAMINATED < 0.3 cm.	HIGHLY	HIGHLY MORE THAN HALF OF THE ROCK MATERIAL IS DECOMPOSED AND/OR DISINTEGRATED TO A SOIL. FRESH OR DISCOLORED ROCK IS PRESENT EITHER AS A DISCONTINUOUS FRAMEWORK OR AS ROCK FRAMENTS OR CORESTORES.		2021 AS SHOWN	M.E.H. J.I	J.M.A. 21016 <u>23</u> of <u>2</u>	
SHALE	G.W.L.♥ AT 5.1' 24—HRS.	DRIVEN 18 INCHES, AND THE COMBINED NUMBER OF BLOWS FOR THE LAST TWO 6-INCH AS STANDARD PENETRATION RESISTANCE (SPT N-VALUES).			V. BROKEN < 3 cm. (<1") BROKEN 3cm8cm. (1"-3")	V. THINLY BEDDED 1 - 3cm. 1/2-1" THINLY BEDDED 3 - 10cm. 1-4"	COMPLETEL WEATHERED			CooMochanics in		600 Munir Drive, P.O. Box 386 Elizabeth, PA 15037-0386
	(CL) – USCS CLASSIFICATION FROM TEST DATA	THE DEPTH AND THICKNESS OF THE SOIL AND ROCK STRATA INDICATED ON THESE GEOLOGIC CROSS SECTIONS ARE GENERALIZED FROM AND INTERPOLATED BETWEEN THE TEST BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE TEST BORINGS. IT IS POSSIBLE THAT SUBSURFACE CONDITIONS BETWEEN THE TEST BORINGS MAY VARY FROM THOSE SHOWN.		BLOCKY 8cm15cm. (3"-6") MASSIVE > 15 cm. (>6")	MEDIUM BEDDED 10 -30cm. 4-12" THICKLY BEDDED 30 - 100cm. 12-40" V. THICKLY BEDDED > 1m. >40"	RESIDUAL SOIL	ALL ROCK MATERIAL IS CONVERTED TO SOIL. THE MASS STRUCTURE AND MATERIAL FABRIC ARE DESTROYED. THERE IS A LARGE CHANGE IN VOLUME, BUT THE SOIL HAS NOT BEEN SIGNIFICANTLY TRANSPORTED.		Consulting Engineers / Scientists Fax:		Fax: (724) 379	Phone: (724) 379-6300 Fax: (724) 379-4242 E-Mail: gmi@geo-mechanics.com

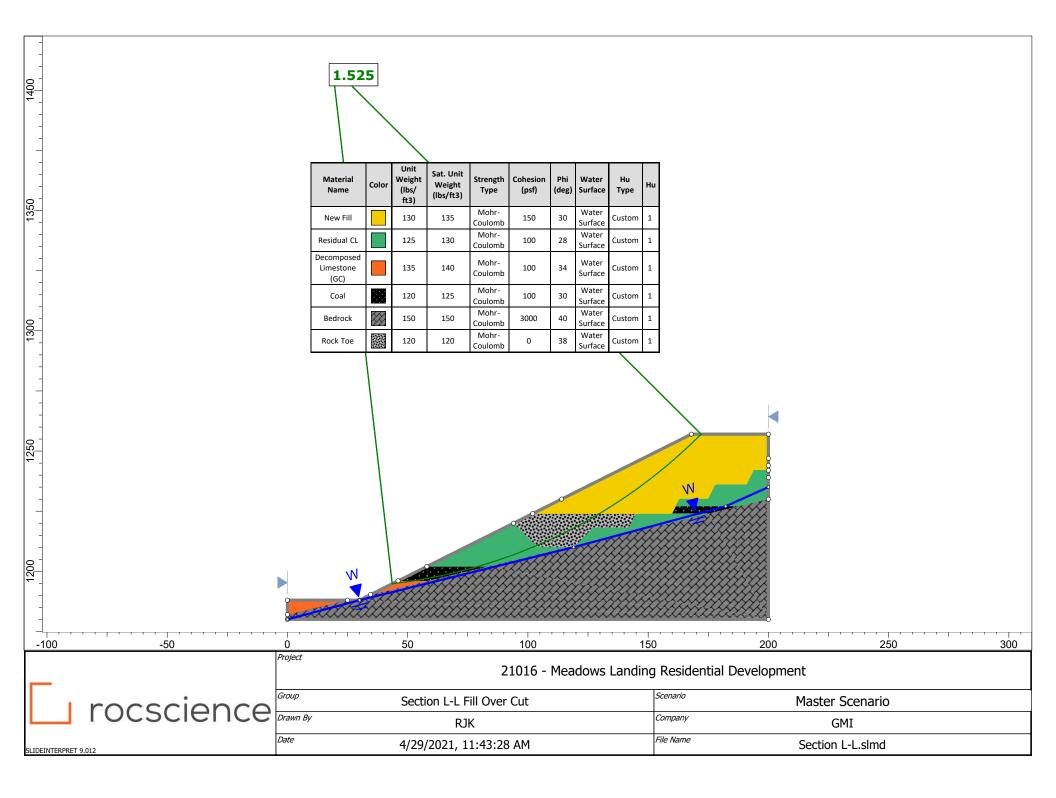


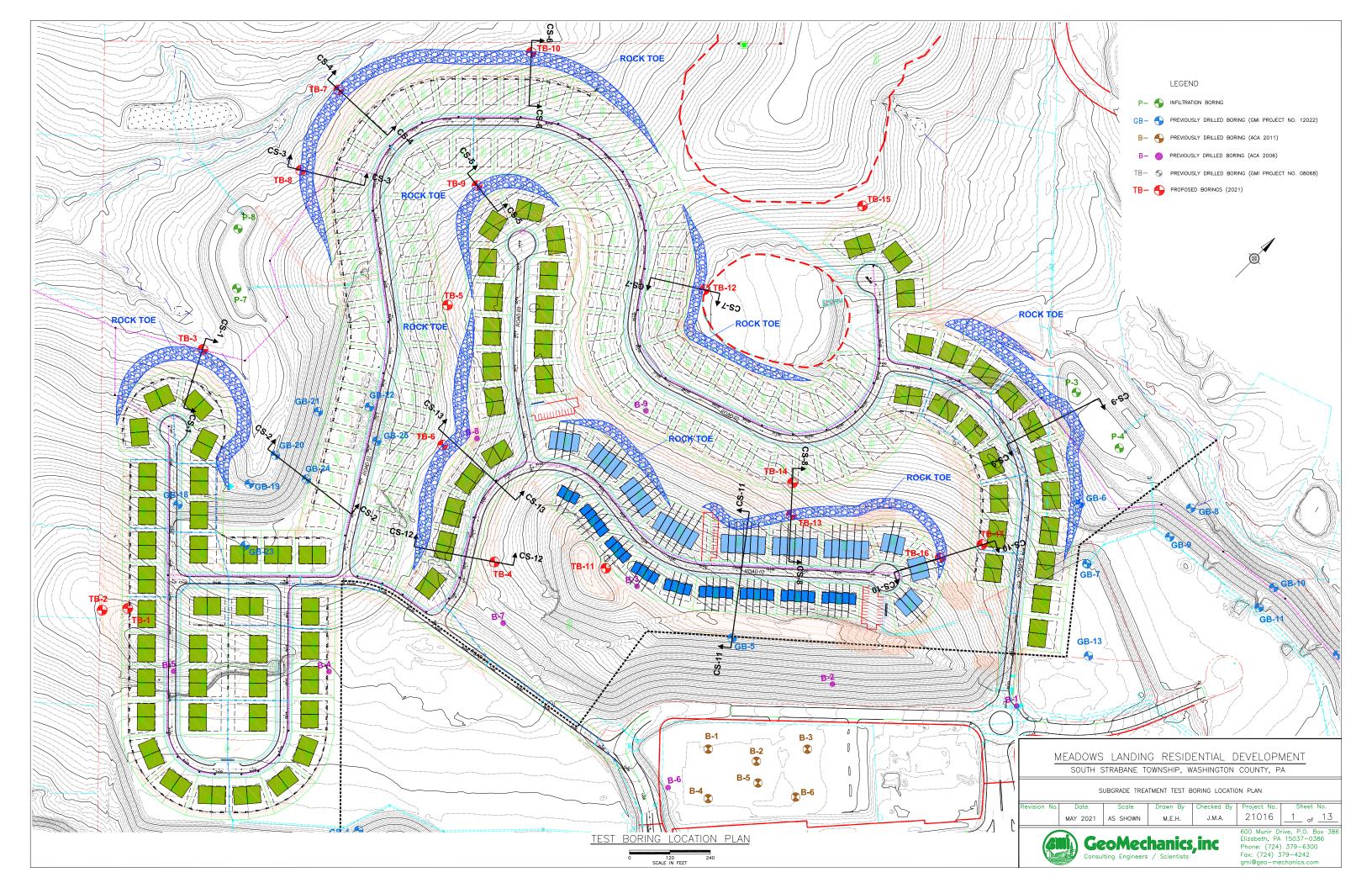


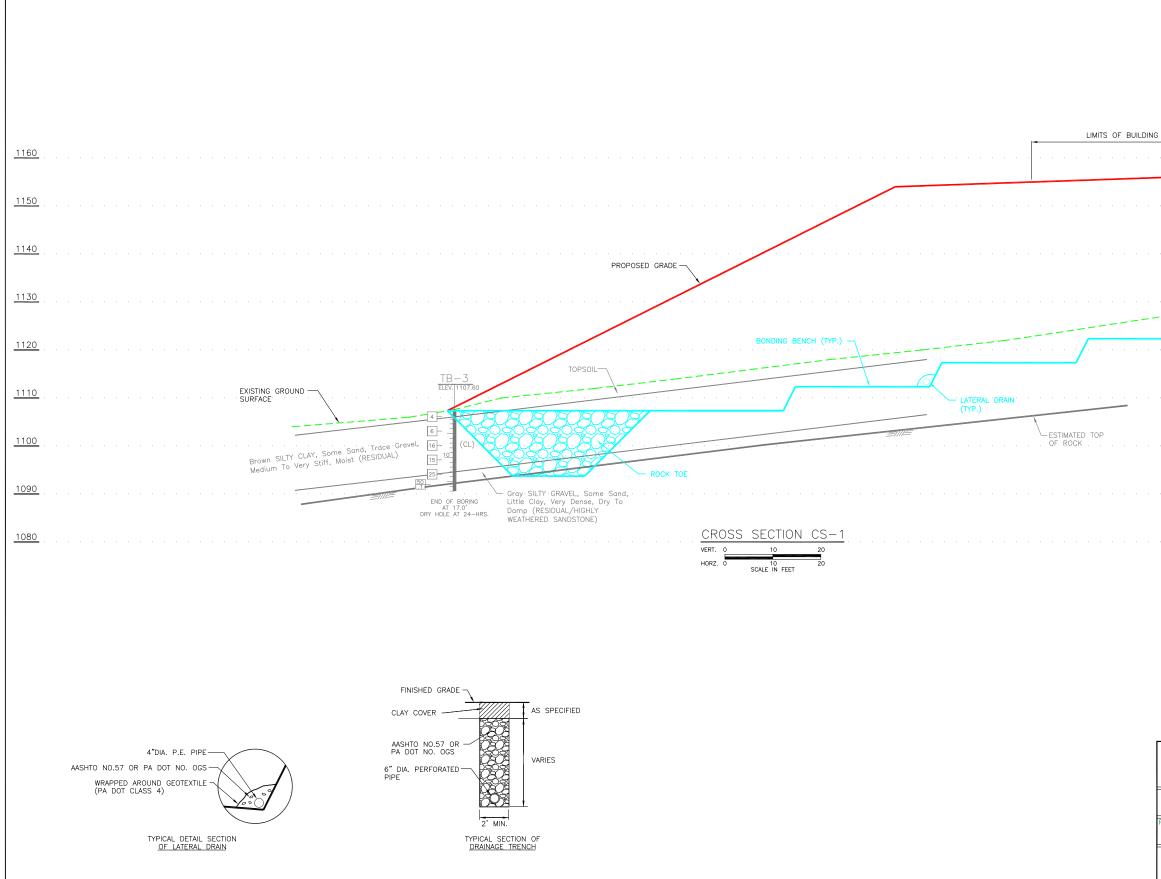

MEADOWS LANDING RESIDENTIAL DEVELOPMENT south strabane twp., washington county, pa													
	GEOLOGIC PROFILE (ROADWAY 06)												
Revision No.	Date	Scale	Drawn By	Checked By	Project No.	Sheet No.							
	MAY 2021	AS SHOWN	M.E.H.	J.M.A.	21016	<u>_24</u> of <u>_24</u>							
	Ge Consu	600 Munir Drive, P.O. Box 386 Elizabeth, PA 15037-0386 Phone: (724) 379-6300 Fax: (724) 379-4242 E-Mail: gmi@geo-mechanics.com											

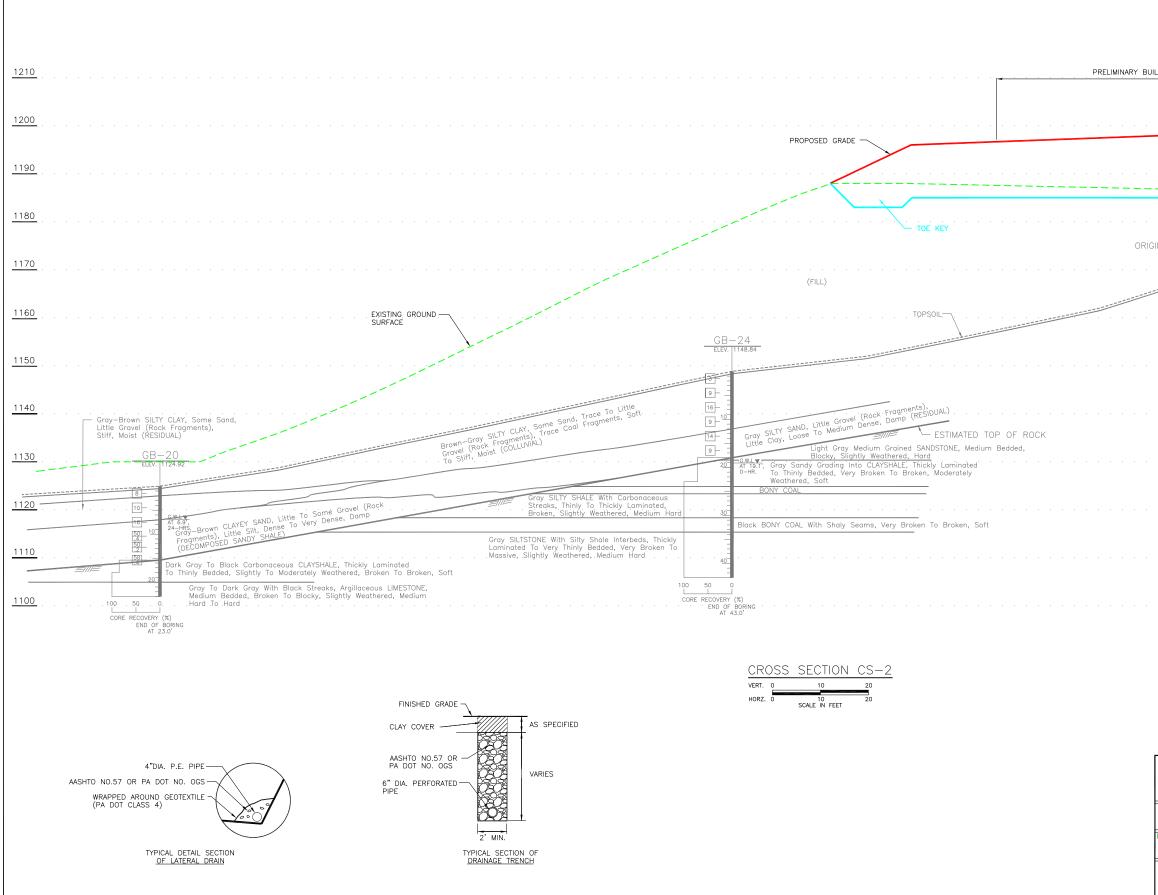

APPENDIX D Slope Stability Analyses



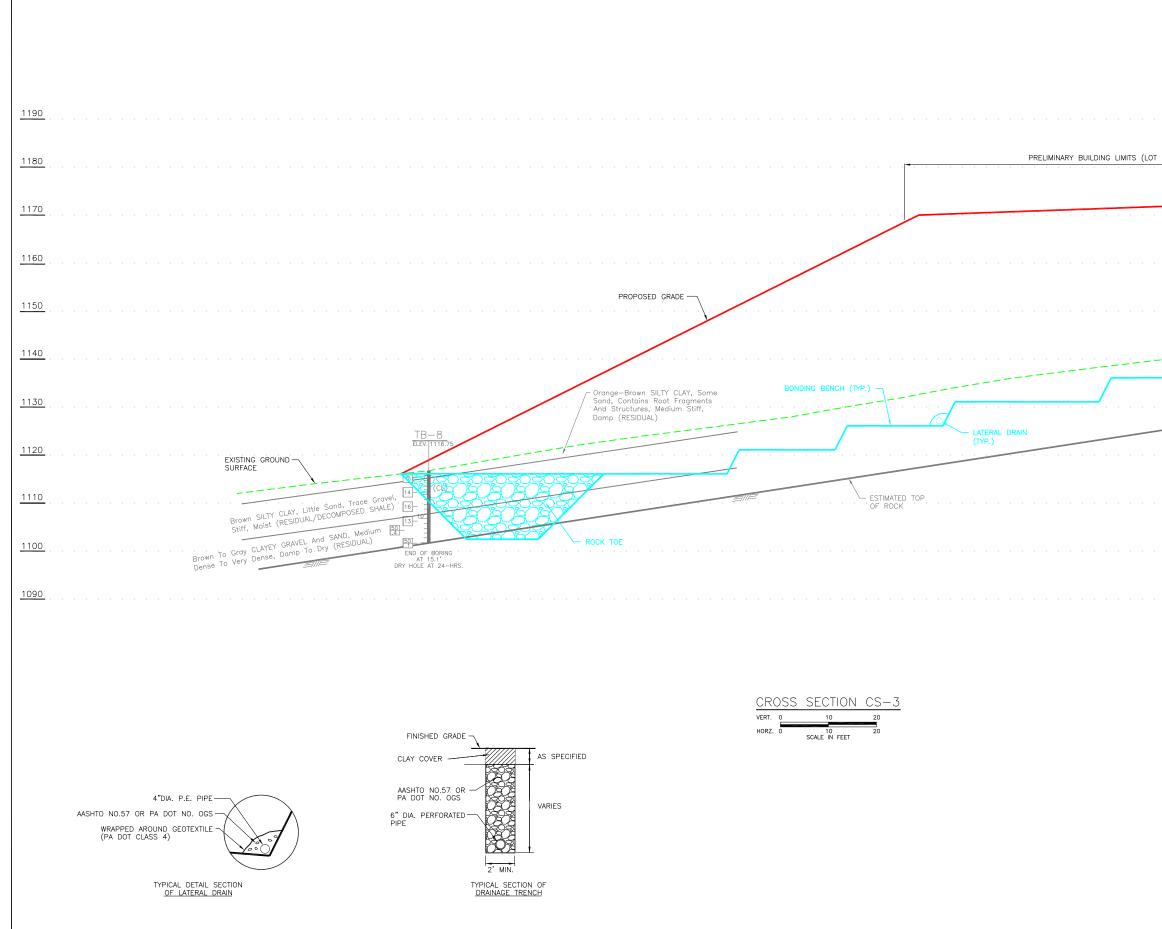


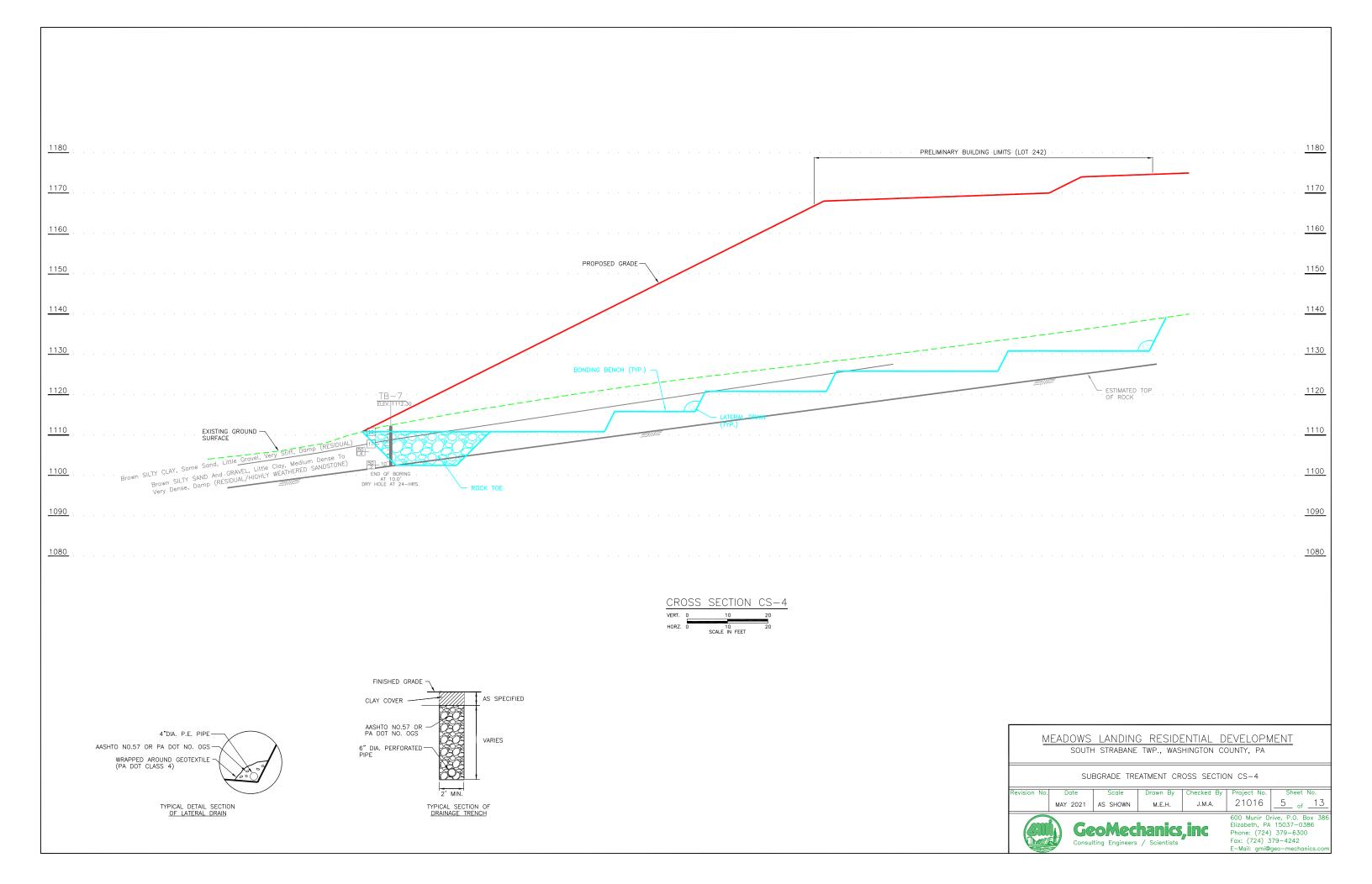


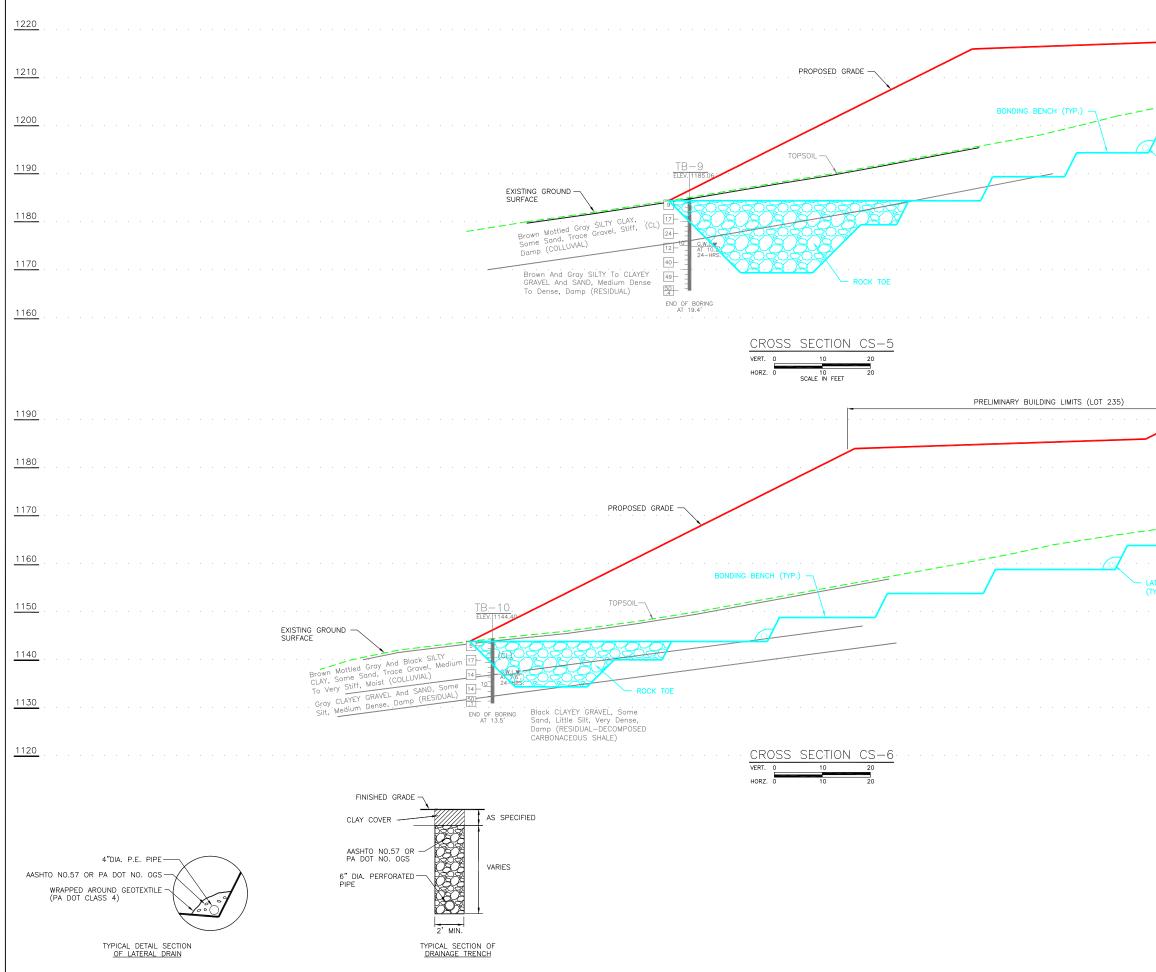




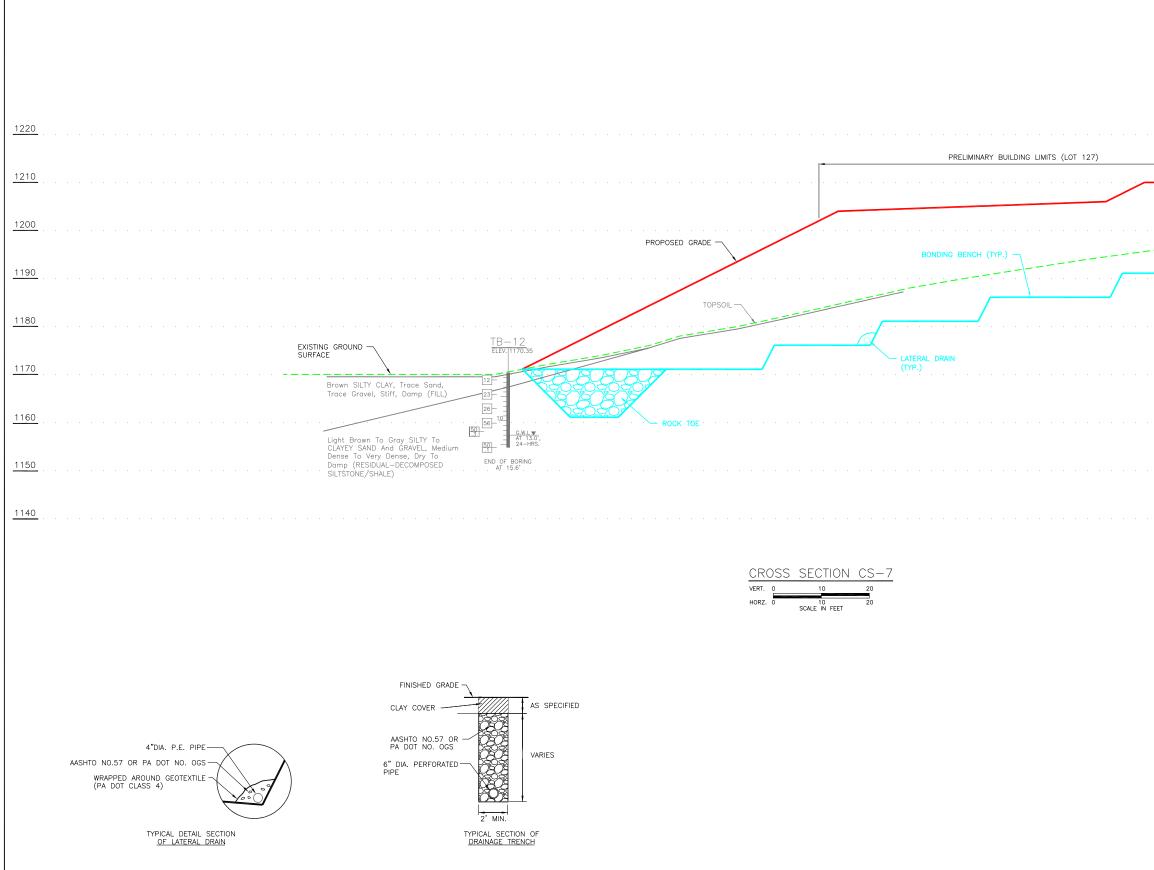
APPENDIX E Typical Embankment Subgrade Treatment Cross-Sections



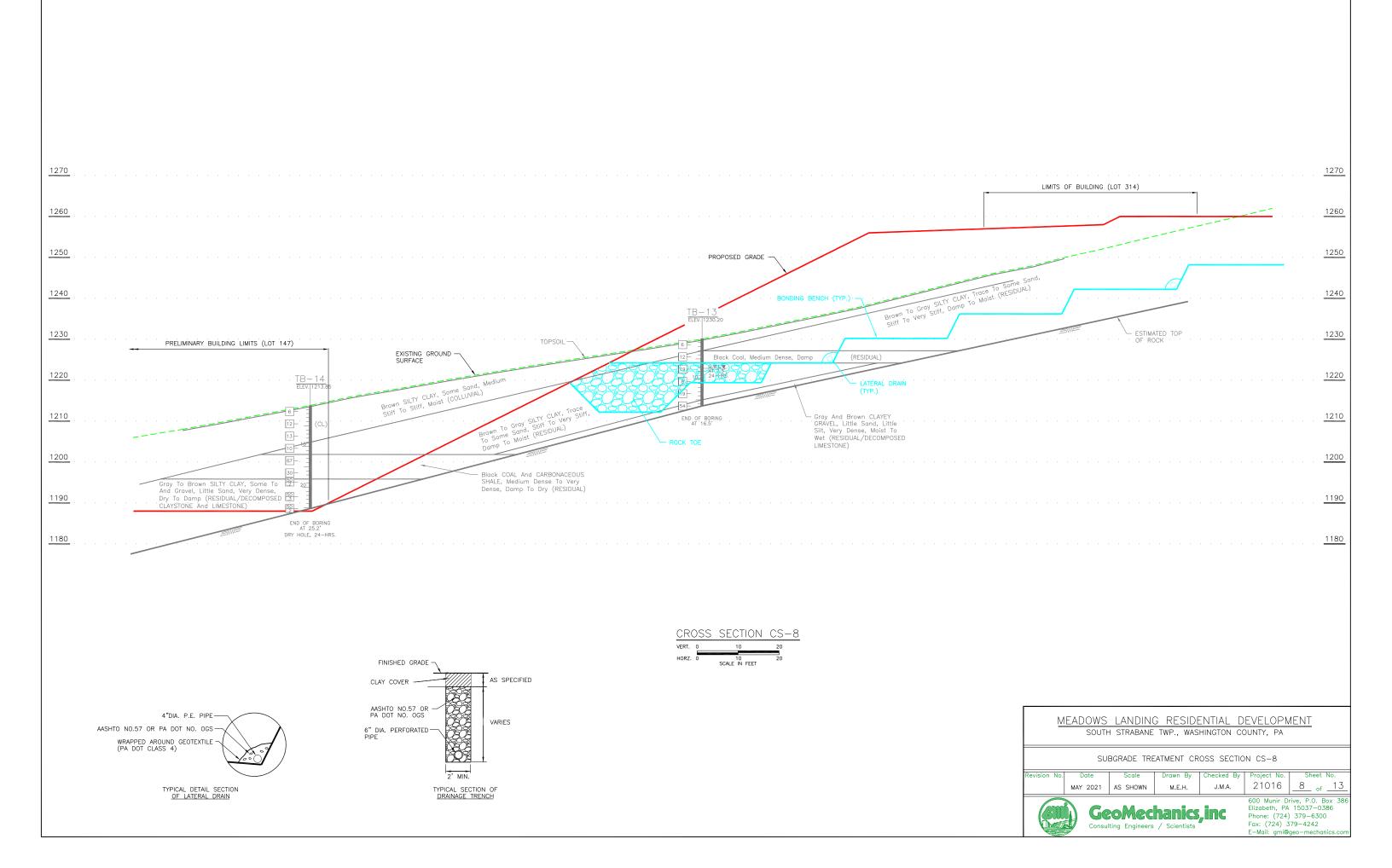

(LOT	269)																									
		_																								<u>1160</u>
/																										
																										1150
																										1140
								_	_			-7	7-													
	 	<u></u> _	·					÷	•	1	6	1														<u>1130</u>
			/																							
																										<u>1120</u>
																										<u>1110</u>
																										1100
										•						•						•	•			
																										1000
																										<u>1090</u>
																										1080
	M	1EA	DO	WS	S	LA	١N	DI	N(3	R	ES	SID)EI	١T	IAI	L	D	ΞV	ΈL	_0	P١	ЛE	N	Γ	
			S	00	TH	ST	RA	BA	NE	T١	ΝP	.,	WA	SH	ING	то	N	СО	UN	ITY	, F	PA				
				S	UB	GR,	ADI	E 1	rre	EAT	ME	INT	С	RO	SS	S	EC.	TIO	N	CS	-1					
Revisio	n No.		Date				Sca			C		vn		(Che			3y			ct N					t No.
		MA	Y 20	021		AS	SH	OWN	1		м	.E.⊦	Η.			J.M.	Α.		_) 1 ·		rive			f <u>13</u> Box 386
	ŚŴ	Ŵ	(G	2	0	M	C	C	h	5)	กโ	C	S_)C			Eli: Ph	zabı one	eth, :: (1	РА 724	A 1) 3	503 79-	7–0 -63	0386
GeoMechanics, inc Consulting Engineers / Scientists											Fa	Fax: (724) 379-4242 E-Mail: gmi@geo-mechanics.c														

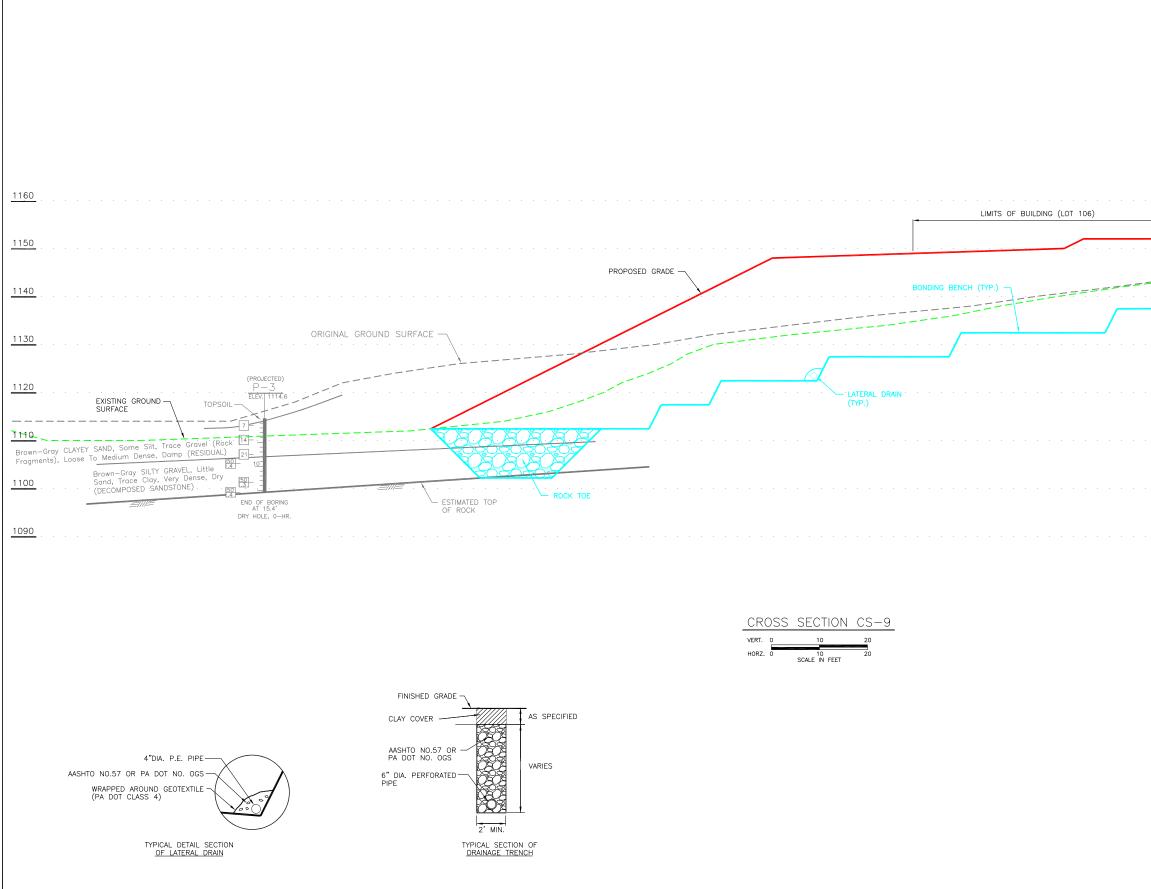


_DING	LIMITS	S (LC	DT 26	50) <u></u>						<u>.</u>		-														1210
			/																							1200
· ·	 				-														· 							1190
																										1180
INAL	GROU	JND	SUF	RFAC	CE-	~																				
							-7-																			1170
																										<u>1160</u>
																										<u>1150</u>
																										1140
																										<u>1130</u>
																										<u>1120</u>
		÷						·	·					·												<u>1110</u>
		·		·	÷		÷	·	·	÷		÷		·	·		÷	÷		÷	÷	÷				<u>1100</u>
	Ν	MEA	ADC S	WS OUT	S ГН	LA STI	.N[Rae) [JAE	NC NE) Tv	RE VP.	ΞS , \	ID VAS	E1 SHI	VT NG	IAI TO	_ N '	DE co	EV UN	EL ty,	.0 P	<u>Р М</u> 'А	ΛE	N٦	-	
				SI	JB(GRA	٩DE	: т	RE	ATI	ИE	NT	С	20	SS	SE	ECT	101								
Revis	ion No		Dat AY 2		,	AS	Scal			D		n E.H			Cheo C	ckeo I.M.			2	10	:t Ւ)1(6	_	3	_ 0'	t No. f <u>13</u>
(G	2 ultir	DI ng I	Engi	C	C	ha	Sci	enti	C sts	5,1					Eliz Pho Fax	abe one: :: (eth, : (7 724	PA (24) (1) 3	、15)3 ⁻ 579-	503 79- -42	7–0 -630 242	Box 386 0386 00 anics.com

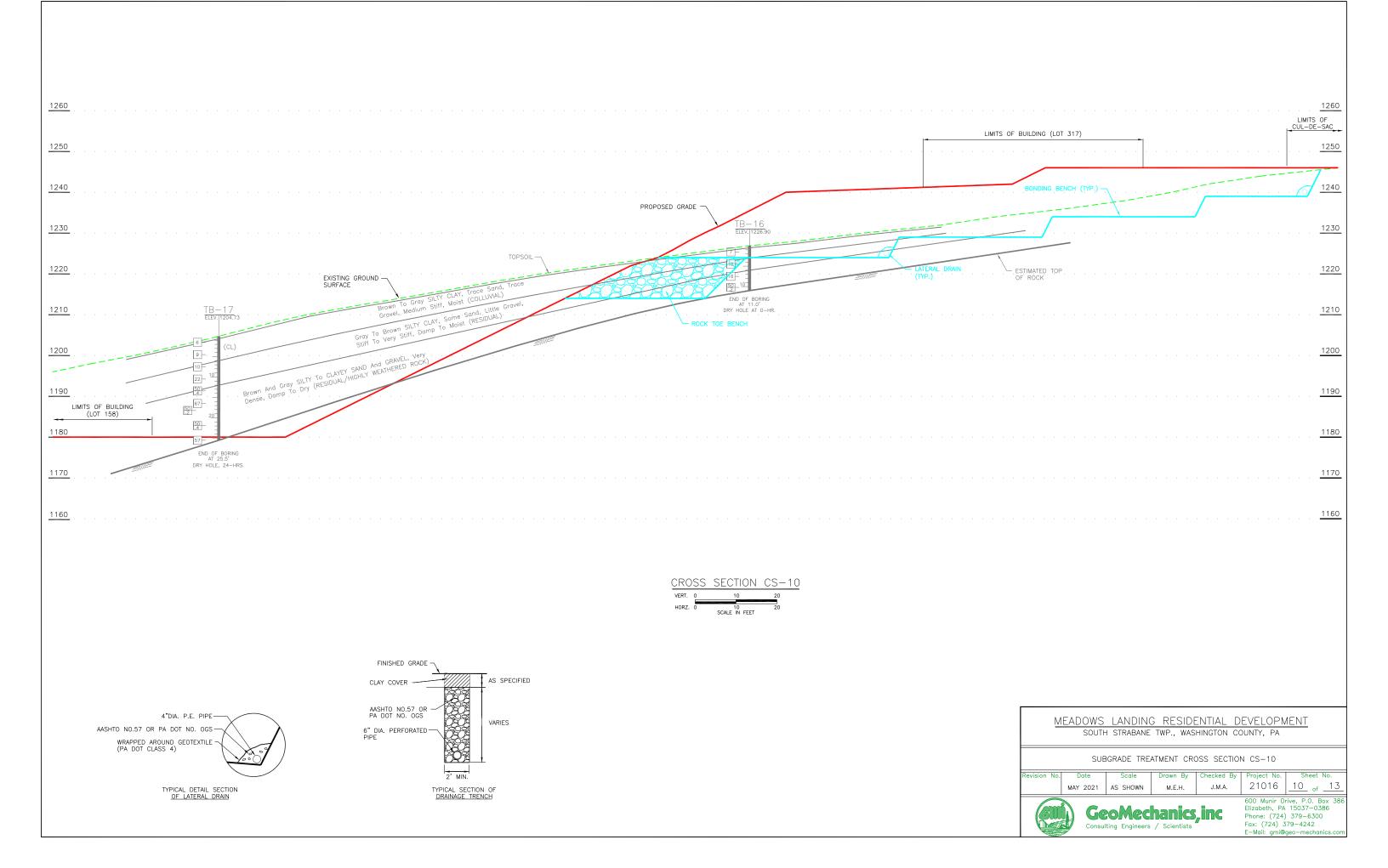


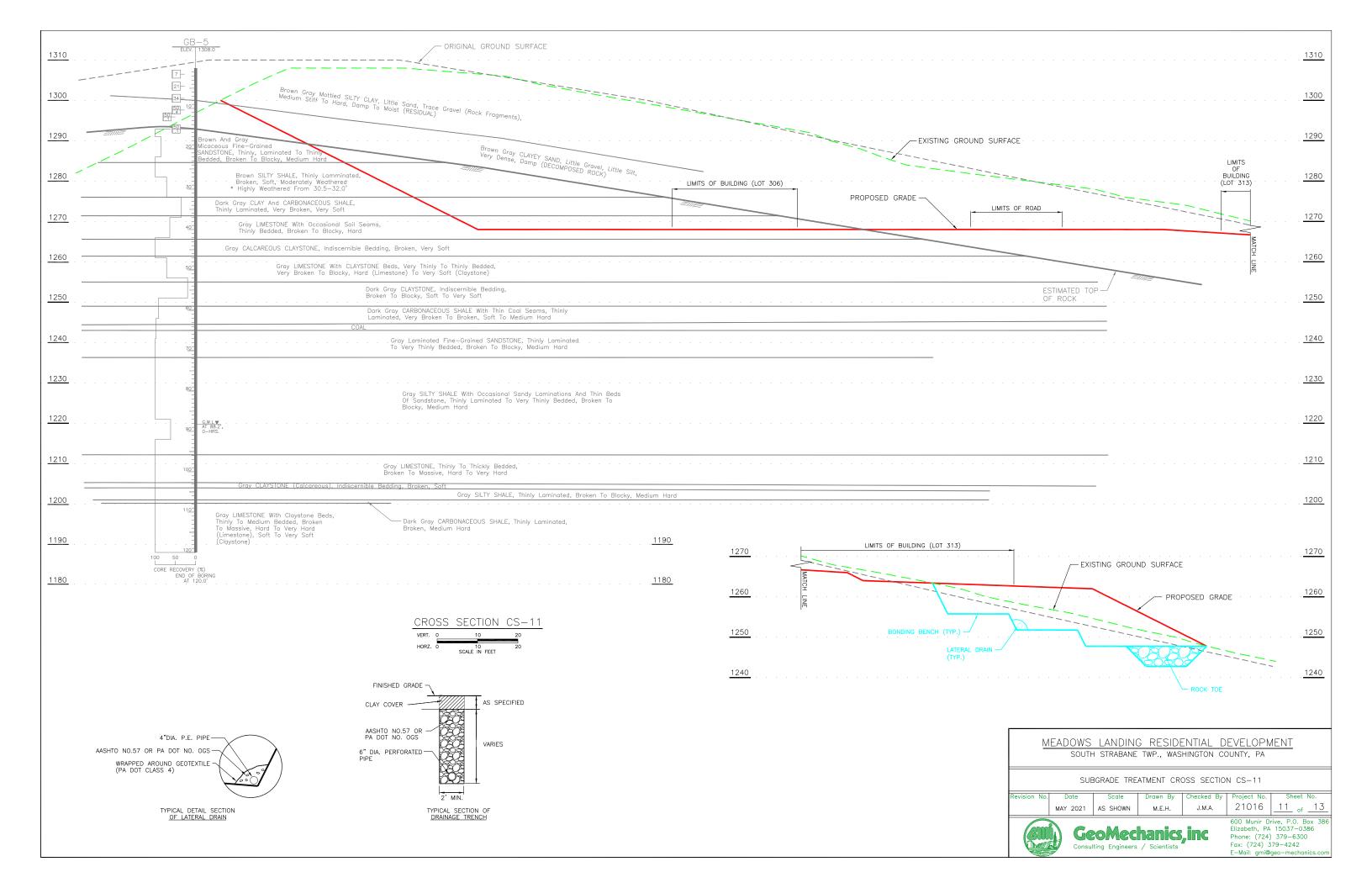
																				1190
245)		• •			1.															<u>1180</u>
																				<u>1170</u>
																				1160
							 													1150
	 · · ·	 	 [1140
																				<u>1130</u>
																				<u>1120</u>
																				<u>1110</u>
																				1100
																				1090
r																				
<u> </u>	1EAD	OWS SOUT	<u>б L</u> / тн s ⁻	AND trab.	ANE	G F TW	RES P.,	SID WAS	EN Shi	JTI NG	AL For	. [. C)E\ 0U1	/EL	_0 , f	Р	ЛE	NT	_	
		SI	JBGR	ADE	TRE	ATM	IENT	CI	205	ss	SE	СТІ	DN	cs	-3					
Revision No.		ate 2021	AS	Scale SHOV			awn M.E.H		С		ked .M.A	Ву 		roje 21(t No. f <u>13</u>
	Ð	Cons	20 ulting	Engir	2C	ha ⁄ s	Cient	lists	- 5,1	'n	C		Eli Ph Fa	zabi ione ix: (eth, : (7 724	PA 724 4) 3	rive 15) 3 379	, P 503 79- -42	.0. 7–0 -630 242	Box 386 386

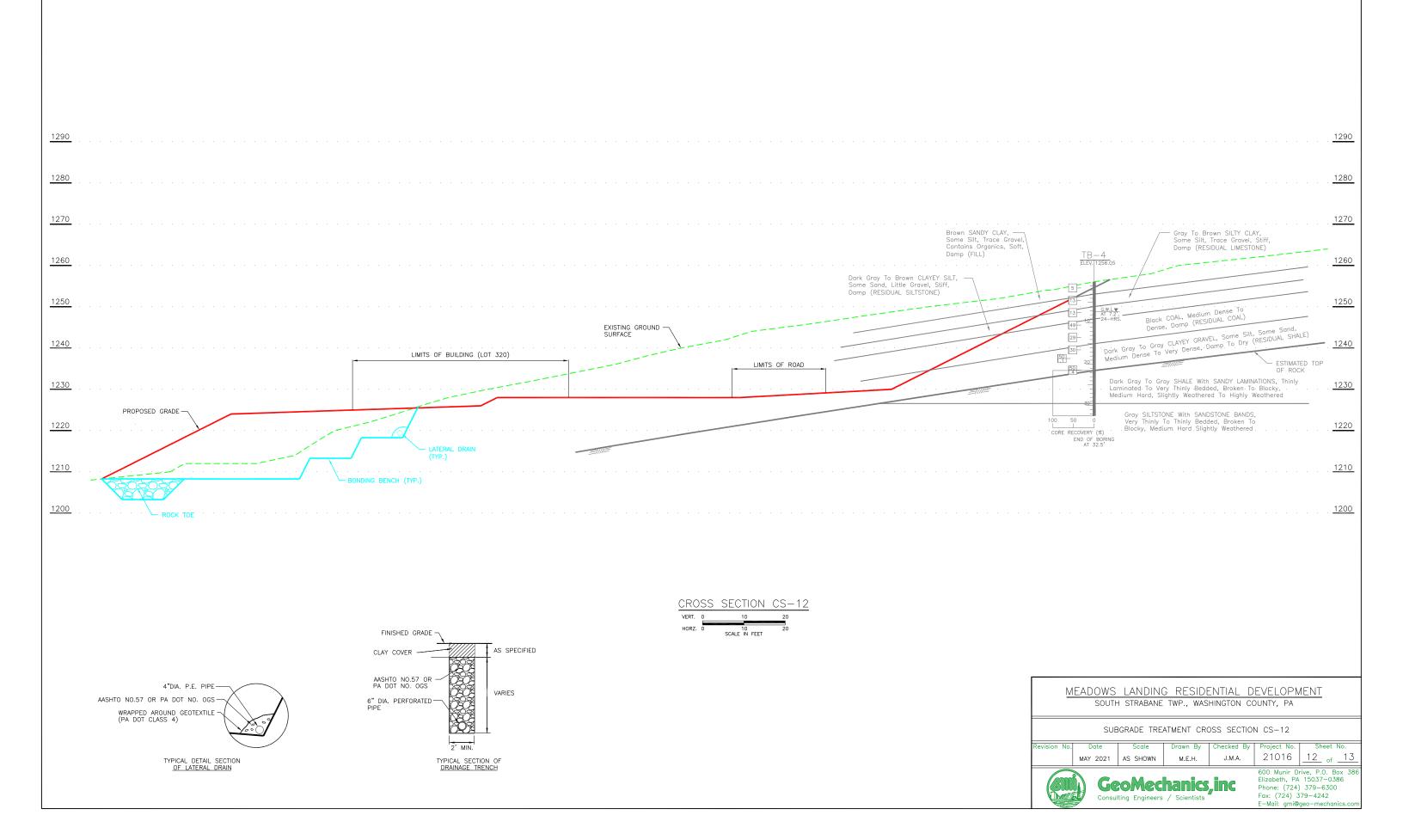


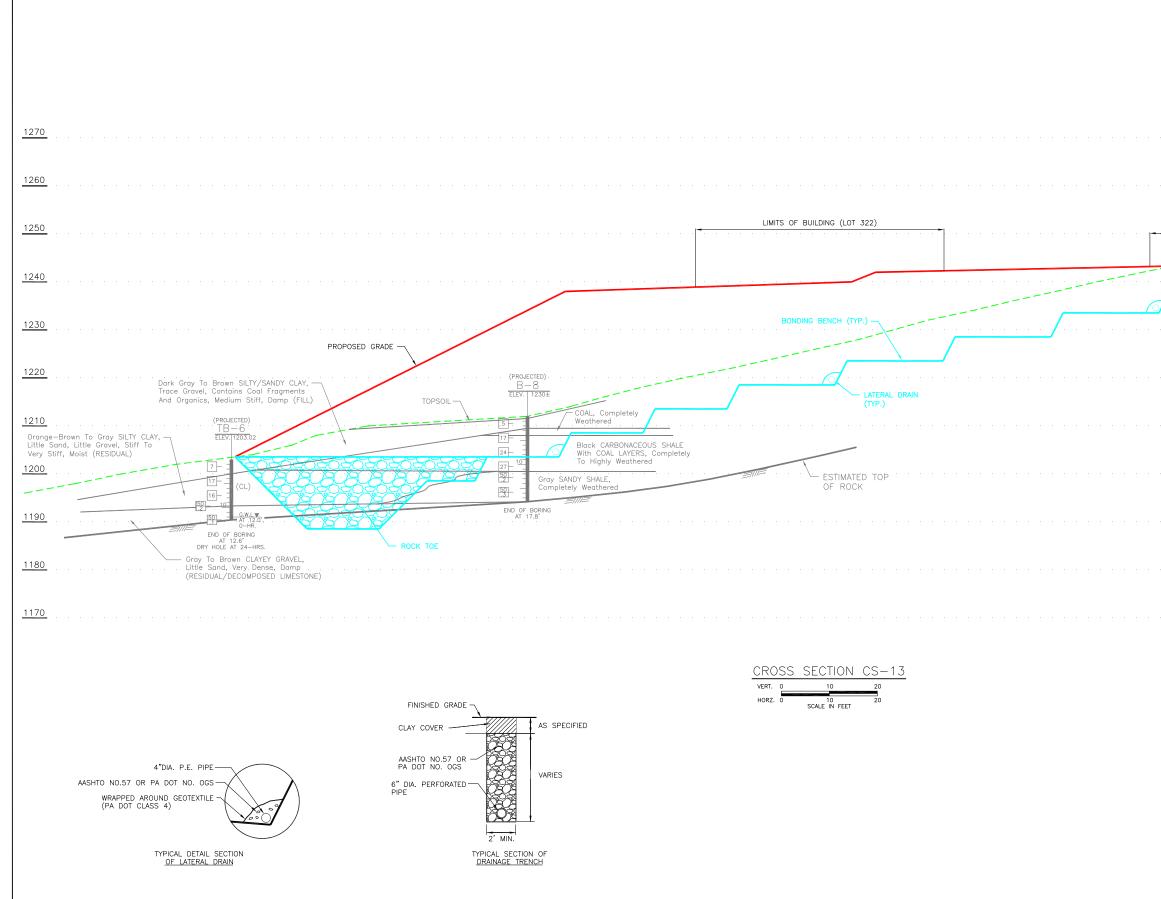


	<u>1220</u>
7	
LATERAL DRAIN	<u>1190</u>
	<u> </u>
	<u> </u>
·····	
	<u>1180</u>
	<u>1170</u>
TERAL DRAIN	
YP.)	
MEADOWS LANDING RESIDENTIAL SOUTH STRABANE TWP., WASHINGTO	DN COUNTY, PA
SUBGRADE TREATMENT CROSS SECTION	
Revision No. Date Scale Drawn By Checke MAY 2021 AS SHOWN M.E.H. J.M.	
GeoMechanics, inc Consulting Engineers / Scientists	600 Munir Drive, P.O. Box 386

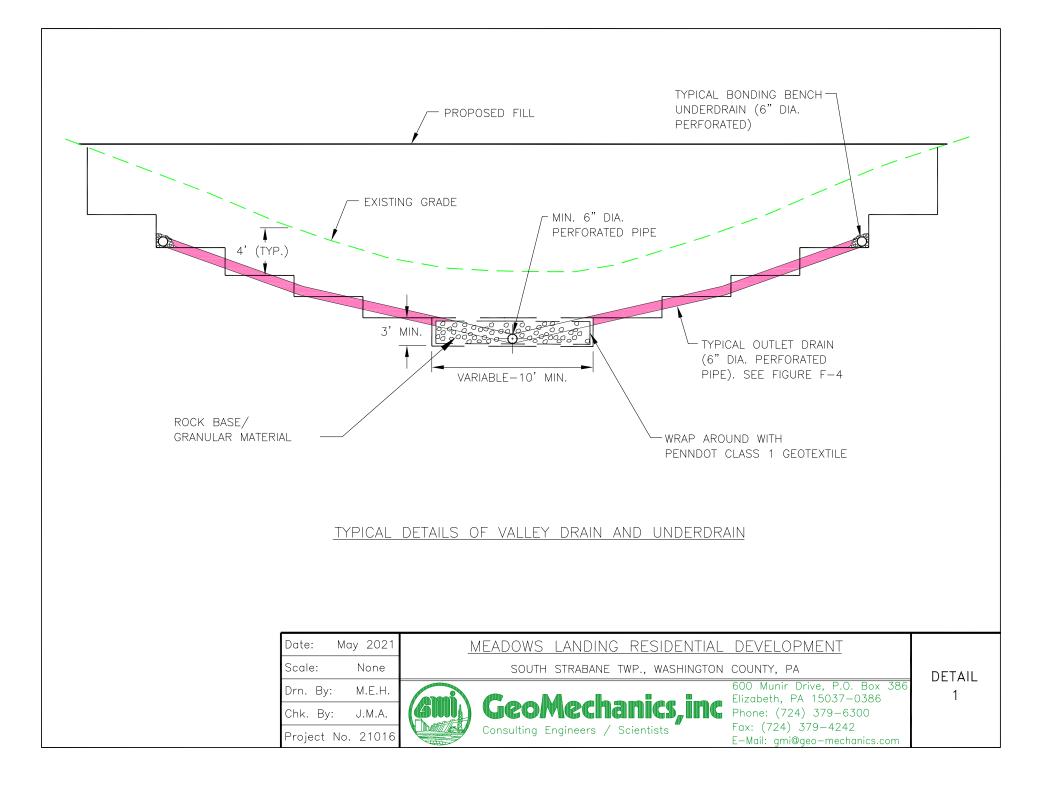


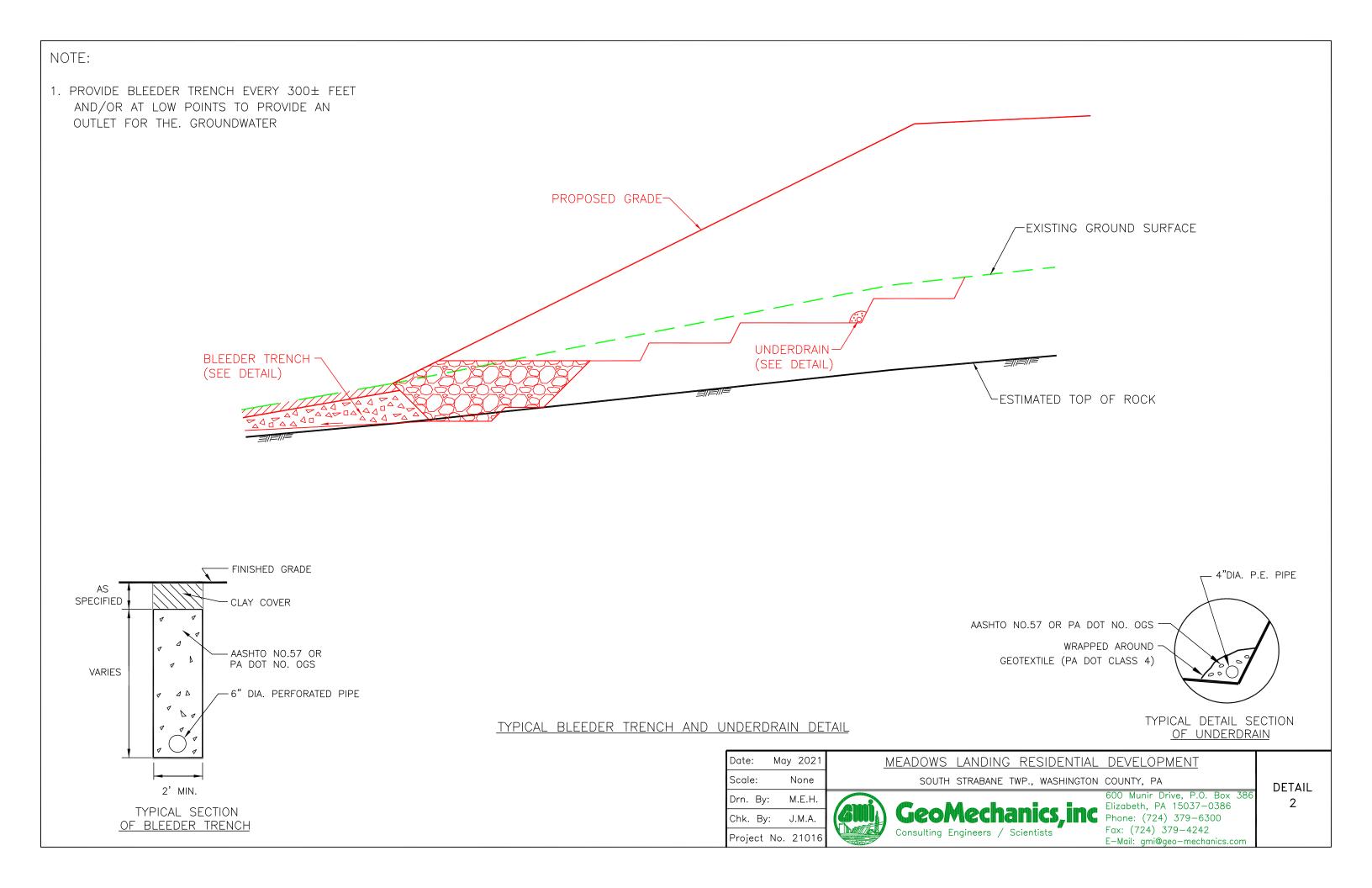

	<u> </u>												
	<u>1190</u>												
	<u>1180</u>												
	1170												
	1160												
	<u>1140</u>												
MEADOWS LANDING RESIDENTIAL D)EVELOPMENT ounty, pa												
SUBGRADE TREATMENT CROSS SECTION CS-7													
Revision No. Date Scale Drawn By Checked By MAY 2021 AS SHOWN M.E.H. J.M.A.	Project No. Sheet No. 21016 7 of 13												
600 Munir Drive, P.O. Box 3 Elizabeth, PA 15037–0386 Phone: (724) 379–6300 Fax: (724) 379–4242 E-Mail: gmi@geo-mechanics.c													

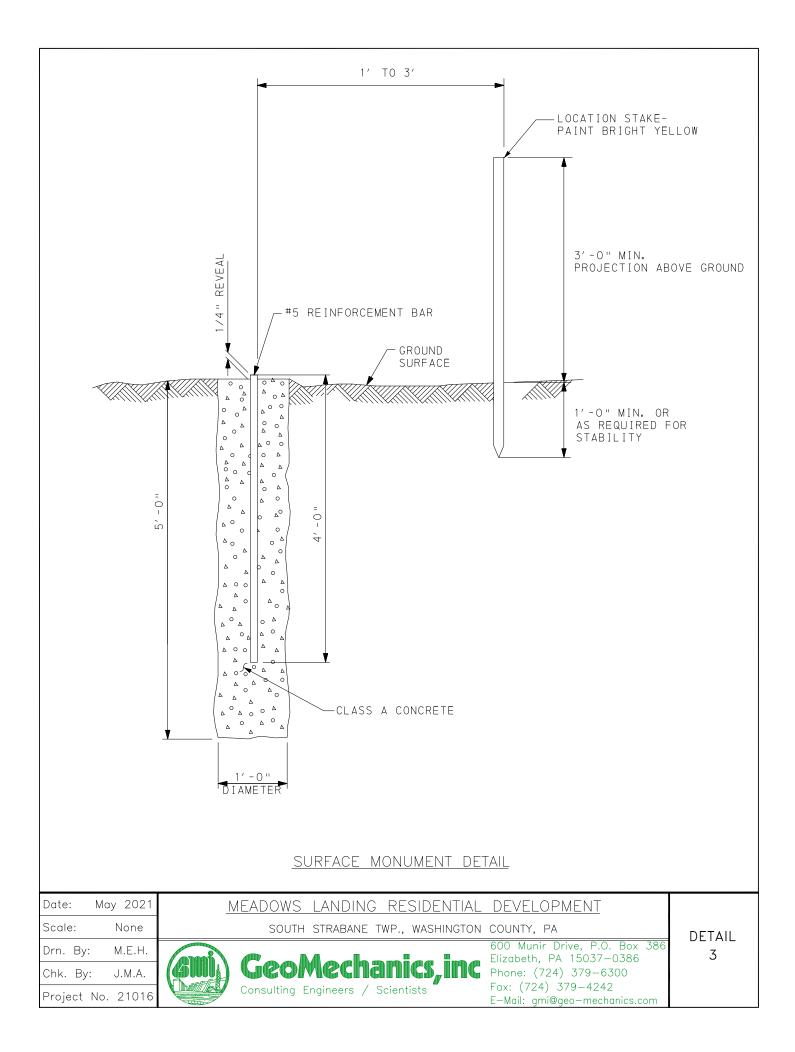


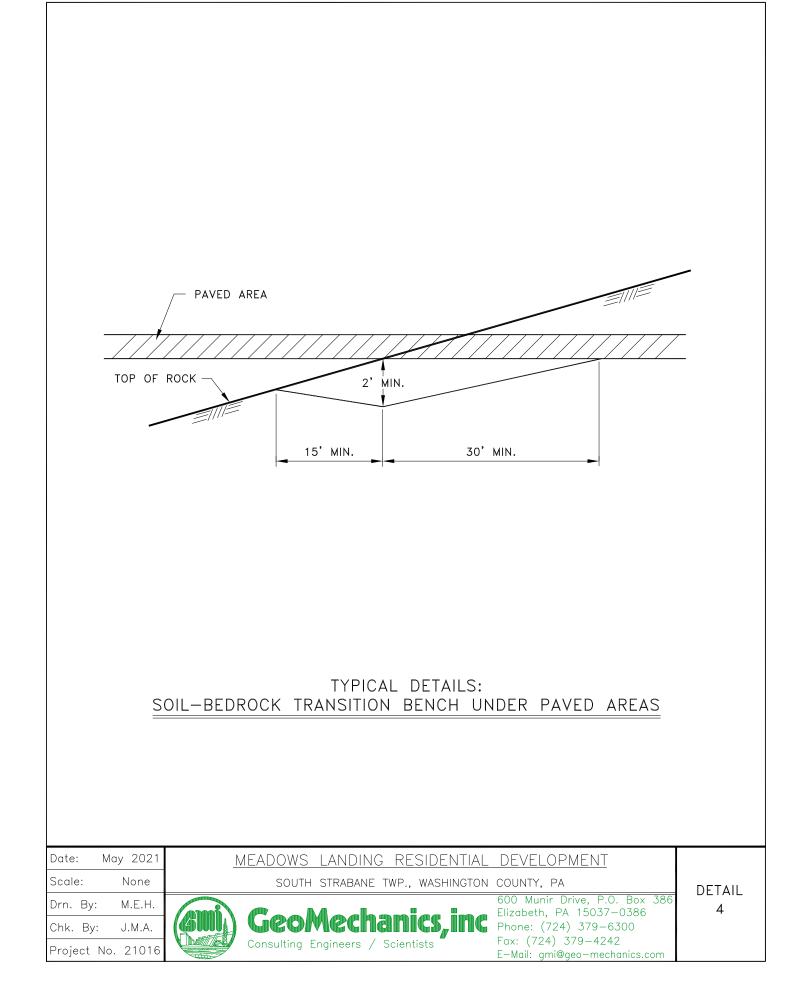


•																	.	LIMI	TS	ŌF	RO	AD		-				<u>1160</u>
													. = =		. <u></u>	- <u>-</u> -			÷		•	/						1150
				•			Ż	5																				1140
																												1130
																												1120
																												<u>1110</u>
																												1100
																												1090
		M	1E,	4[)() S(W: DU	S Th	L	AN TRA	IDI ABA	N(NE) TV	RE NP.	ES ., 1	ID WA)El SH	VT NG	IAI TO	 N	DI	EV	EL	_0 , p	PN 'A	ЛE	N	Γ	
							UE	BGF			TRE																1.	1 10
(evisi	ion	No.			oate 20			AS		ole IOWI	N			n E.⊢				cke J.M.		y	2	210	01	6	_	9	_ 0	t No. f <u>13</u>
Revisi	ion	No.			()21 G	C Sult	0	M		N C	h	3	.E.⊢		<u> </u>		J.M.	A.	ly	60 Eliz Pho Fax	210 0 N 2abo one <: (luni eth, : (7 724	6 r D PA 724	4 18) 3 379	9 503 79-	0 2.0. 07-0 -630 242	f Box








	1270
EXISTING GROUND	<u>1260</u>
LIMITS OF ROAD	1250_
	1240_
/	<u>1230</u>
	1220_
	<u>1210</u>
	<u>1200</u>
	<u>1190</u>
	<u>1180</u>
	<u>1170</u>
MEADOWS LANDING RESIDENTIAL DEVELOPMENT	
MEADOWS LANDING RESIDENTIAL DEVELOPMENT SOUTH STRABANE TWP., WASHINGTON COUNTY, PA	
SUBGRADE TREATMENT CROSS SECTION CS-13 Revision No. Date Scale Drawn By Checked By Project No. Sheet	No
MAY 2021 AS SHOWN M.E.H. J.M.A. 21016 13 of	_ <u>13</u>
GeoMechanics, inc Consulting Engineers / Scientists	386 0

APPENDIX F Typical Details

