

POST-CONSTRUCTION STORM WATER MANAGEMENT PLAN

MEADOWS LANDING RESIDENTIAL DEVELOPMENT

SITUATE IN: SOUTH STRABANE TOWNSHIP

WASHINGTON COUNTY, PENNSYLVANIA

PREPARED FOR:

Meadows Landing Associates, LP 650 Washington Road, Suite 400 Pittsburgh, PA 15228

3992

August 2021

1712 Mt. Nebo Road 2nd Floor Sewickley, PA 15143 Phone: 412-219-4509 - Fax: 412-528-1974

TABLE OF CONTENTS

PAGE NO. 3	DESCRIPTION Executive Summary
3	Methodology
4	Existing Conditions
5	Proposed Conditions - With PCSM Facilities
6	PCSM Facilities
11	BMP Volume Credits
11	Storm Sewer System
11	Conclusion and Act 167 Consistency
12	PA Title 25, Chapter 102, Section 102.8, PCSM Requirements

APPENDIX

>	A - Site Location Map
>	B - Soils Report
>	C - Pre and Post Development Drainage Area Maps
>	D - Pre and Post Development Hydrographs
>	E - PADEP BMP Worksheets
>	F - Pipe and Storm Sewer Calculations
>	G - Long Term Operation and Maintenance Plan
>	H – Infiltration Testing
>	I - Qualifications and Experience

Executive Summary

The Meadows Landing Residential Development Plan project is located off of Washington Road in South Strabane Township, Washington County, Pennsylvania. The applicant/owner Meadows Landing Associates, LP is located at 650 Washington Road, Pittsburgh, PA 15228.

This proposed project consists of the construction of a residential development. The site currently consists of primarily wooded, open meadow and some impervious areas. Due to existing site topography, the site is divided into three (3) drainage areas. Drainage Area 1 (DA-1)(POI-1), consisting of the Northern portion of the site flows to the North to UNT of Chartiers Creek. Drainage Area 2 (DA-2), consisting of the Southwester portions of the site flows to the Southwest to a separate UNT of Chartiers Creek. Drainage Area 3 (DA-3)(POI-3), consisting of the Southeastern portions of the site flows to the Southeast to a separate UNT of Chartiers Creek has a Chapter 93 designation of Warm Water Fishes (WWF). The PA Water Plan watershed is Upper Ohio River. There is an approved ACT 167 Plan for Washington County. The sites' past (50 years) and present (5 years) use is primarily woodland and meadow.

The developer intends to begin mass grading operations as soon as project approvals are received. Stabilization of the site will consist of either grass for the lawn areas to minimize impervious areas or impervious surfacing for the structures and paved areas. Land clearing and grading will be minimized by only clearing and grading land areas we are going to be utilized for construction. New impervious areas have been minimized by strategic placement of the proposed roadway layout. Compaction in the basin areas and soil compaction will be minimized by primarily traveling over disturbed areas rather than non-paved areas. The proposed schedule for the project's start of final grading could be as soon as approvals are obtained, with an anticipated project life of two years before construction is completed.

Three (3) permanent surface storm water management facilities will attenuate post-development peak flow rates from the proposed site improvements. This project will preserve the integrity of stream channels and maintain and protect the physical, biological and chemical qualities of the receiving streams and maximize the protection of drainage features and existing vegetation.

The purpose of this report is to determine the effect that the development will have on storm water runoff volume and peak flow rates. Specifically, the means of controlling increases in runoff volume for the 2-year 24-hour event and storm water peak flow rate during the 1-, 2-, 10-, 25-, 50-, and 100-year storms. The site is located within the Ohio River Watershed in Washington County.

Methodology

The storm water calculations in this report were generated using the program Hydraflow Hydrographs 2016. This program uses both the USDA SCS TR-55 methodology defined in Technical Release No. 55 and the previous version, TR-20 to calculate time of concentrations and develop pre- and post-development hydrographs. The Modified Puls method is also used in this program to route the hydrographs through the storm water facilities. Rainfall amounts for the indicated storms above were taken from the NOAA Atlas 14 Server. The rainfall amounts for the indicated storms are as follows for this site:

NAINI ALL DATA			
Desig	'n	Precipitation	
Storr	n	(Inches)	
1 YF		2.02	
2 YF		2.41	
10 Y	R	3.38	
25 Y	R	4.00	
50 Y	R	4.50	
100 Y	̈́R	5.03	

RAINFALL DATA

The soils present on the site were determined from the NRCS Soil Survey Mapping (refer to Appendix B). All ground coverage was assumed to be in good condition.

Existing Conditions

Due to existing site topography, the site is divided into three (3) drainage areas. Drainage Area 1 (DA-1)(POI-1), consisting of the Northern portion of the site flows to the North to UNT of Chartiers Creek. Drainage Area 2 (DA-2), consisting of the Southwestern portions of the site flows to the Southwest to a separate UNT of Chartiers Creek. Drainage Area 3 (DA-3)(POI-3), consisting of the Southeastern portions of the site flows to the Southeastern portions of the site flows to a separate UNT of Chartiers Creek. Chartiers Creek has a Chapter 93 designation of Warm Water Fishes (WWF). The PA Water Plan watershed is Upper Ohio River. There is an approved ACT 167 Plan for Washington County. The sites' past (50 years) and present (5 years) use is primarily woodland and meadow.

Using the rainfall data, curve numbers, and time of concentrations, a hydrograph was developed for the drainage area. The ground cover and peak flows were calculated for the existing pre-development site conditions and can be seen in the following two (2) tables.

POI = Downstream Point of Interest DA = Drainage Area

Cover Type/Condition			
Meadow	A, B, C, D	30, 58, 71, 78	
Woods	B, C, D	55, 70, 77	
Impervious Pavement	NA	98	

PRE-DEVELOPMENT CONDITIONS – COVER TYPE

Storm Frequency (yr)	POI-1 Peak Flow (cfs)	POI-2 Peak Flow (cfs)	POI-3 Peak Flow (cfs)
1	33.31	23.01	14.72
2	54.64	38.99	24.94
10	116.42	85.79	54.89
25	160.72	119.41	76.40
50	198.38	148.27	94.86
100	239.49	179.87	115.08

Proposed Conditions – With Post Construction Stormwater Management (PCSM) Facilities

For this project four (4) sediment basin are proposed to be installed during the E&S and site grading phase to control and limit sediment laden runoff from leaving the site. Once site construction is completed and the site is stabilized, the sediment basins will be converted into a infiltration basins. The basins will serve as the primary means of storm water management for the project site.

The Post-Construction Drainage Area (DA) contributing to POI-1 was analyzed as follows:

- The overall contributing DA consists of three (3) component sub-DA's.
- Two (2) DA's will be collected and conveyed to Infiltration Basins for release rate and 2-yr storm volume control.
 - DA-1A flows to Infiltration Basin 1 Forebay and has a contributing area of approximately 41.61 acres.
 - DA-1A flows to Infiltration Basin 1 Forebay and has a contributing area of approximately 40.30 acres. IB-2 Forebay, discharges directly into IB-1.
 - DA-1B flows to IB-1 and has a contributing area of approximately 19.52 acres.
 - 9.13 acres of meadow area within DA-1A are considered 70% impervious and 30% open space to account for potential future development. This area is shown on the Post Development Drainage Area Map (See Appendix C).
- One (1) DA, DA-1C, will be released uncontrolled and has a contributing area of approximately 17.19 acres.

The Post-Construction Drainage Area (DA) contributing to POI-2 was analyzed as follows:

- The overall contributing DA consists of three (3) component sub-DA's.
- Two (2) DA's will be collected and conveyed to Infiltration Basins for release rate and 2-yr storm volume control.
 - DA-2A flows to Infiltration Basin 2 Forebay and has a contributing area of approximately 40.30 acres. IB-2 Forebay, discharges directly into IB-2.
 - DA-2B flows to Infiltration Basin 2 and has a contributing area of approximately 2.24 acres.
- One (1) DA, DA-2C, will be released uncontrolled and has a contributing area of approximately 22.42 acres.

The Post-Construction Drainage Area (DA) contributing to POI-3 was analyzed as follows:

- The overall contributing DA consists of two (2) component sub-DA's.
- One (1) DA will be collected and conveyed to an Infiltration Basin for release rate and 2-yr storm volume control.
 - DA-3A flows to Infiltration Basin 3 and has a contributing area of approximately 34.84 acres.
 - A portion of meadow area (approximately 7.3 acres) exists between the proposed local road and a run of existing 48" diameter storm pipe and that is tributary to basin 3, will remain during the post-development phase of this project. This meadow area is within DA-3A and is tributary to Infiltration Basin 3. The as-designed capacity of Infiltration Basin 3 does not account for any additional future impervious cover in this meadow area or anywhere else beyond the scope of the current project. Should future development occur in this meadow area, or elsewhere, Basin 3 will need to be re-designed and retrofitted, and/or additional stormwater facilities designed and implemented accordingly.
- One (1) DA, DA-3B, will be released uncontrolled and has a contributing area of approximately 6.42 acres.

PCSM Facilities

The stormwater basins will provide storm water management for the increased runoff caused by the additional impervious and open space area resulting from the development. The basins have been designed, and routing calculations performed, to demonstrate that the post-development flow is reduced to levels less than or equal to those of the pre-development conditions when analyzed at the same downstream Points of Interest (POI). The above ground infiltration basins will be routed through a Type M inlet outlet control structure to regulate the discharge of the basin. The basins will detain up to a 2-year runoff volume for the given drainage areas which will improve the water quality downstream.

Below are stage storage table (available basin volume) and outlet structure characteristics for the proposed basins:

STAGE STORAGE TABLE				
Elevation (ft)	Area (sf)	Storage (cf)		
1114	14,648	0		
1115	16,236	15,434		
1116	17,929	32,507		
1116.5	18,777	41,682		
1118	21,593	71,932		
1120	25,593	119,057		

INFILTRATION BASIN-1 FOREBAY

Infiltration Basin Outlet Structure Configuration – Type M Inlet

15' Wide Weir/Emergency Spillway @ Elevation 1117.80 Top of 10' Wide Berm 1120.0

Using the outlet structure and the available volume in the storm water management facilities, the following routings were calculated:

Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Stage (ELEV)	Peak Storage Volume (cf)
1	53.68	6.82	1116.8	46,938
2	73.81	32.51	1117.3	56,826
10	128.23	104.40	1118.1	75,075
25	164.71	139.74	1118.5	83,345
50	194.49	166.97	1118.7	89,247
100	226.23	195.54	1119.0	95,114

BASIN-1 FOREBAY - ROUTING SUMMARY

BASIN-1

STAGE STORAGE TABLE				
Elevation (ft)	Area (sf)	Storage (cf)		
1113	41,195	0		
1114	44,172	42,671		
1116	50,293	137,060		
1118	56,640	243,919		
1120	63,214	363,701		

Infiltration Basin Outlet Structure Configuration – Type M Inlet

48" Outlet Pipe @ Elevation 1106.18 (Existing Pipe) Adjusted Top of Existing Concrete Outlet Structure @ Elevation 1114.5 116' Wide Emergency Spillway @ Elevation 1118.0 Top of 10' Wide Berm 1120.0

Using the outlet structure and the available volume in the storm water management facilities, the following routings were calculated:

BASIN-1 - ROUTING SUMMARY				
Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Stage (ELEV)	Peak Storage Volume (cf)
1	32.29	3.21	1114.2	53,060
2	58.92	8.67	1114.7	76,731
10	166.44	59.50	1115.7	123,767
25	220.54	77.95	1116.7	164,875
50	262.41	87.45	1117.2	203,476
100	306.36	98.54	1118.0	243,869

BASIN-1 - ROUTING SUMMARY

Elevation (ft)	Area (sf)	Storage (cf)		
1118	7830	0		
1120	10570	18,330		
1122	13621	42,454		
1124	16944	72,956		
1126	20494	110,334		

INFILTRATION BASIN-2 FOREBAY STAGE STORAGE TABLE

1120 20434 110,334

Infiltration Basin Outlet Structure Configuration – Type M Inlet

36" Outlet Pipe @ Elevation 1112.0 Top of 2'x4' Concrete Outlet Structure @ Elevation 1120.0 12' Wide Emergency Spillway @ Elevation 1122.0 Top of 10' Wide Berm 1126.0

Using the outlet structure and the available volume in the storm water management facilities, the following routings were calculated:

DASIN-2 FOREDAT - ROOTING SOMMART				
Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Stage (ELEV)	Peak Storage Volume (cf)
1	59.07	47.66	1121.1	31,870
2	79.50	66.15	1121.4	36,515
10	134.12	102.93	1122.8	54,550
25	169.91	145.05	1123.3	62,541
50	198.96	171.88	1123.6	67,252
100	229.81	198.55	1124.0	73,187

BASIN-2 FOREBAY - ROUTING SUMMARY

Computer printouts of the hydrographs and routing calculations are found in appendix D.

INFILTRATION BASIN-2

STAGE STORAGE TABLE				
Elevation (ft)	Area (sf)	Storage (cf)		
1110	25,324	0		
1112	29,507	54,772		
1114	33,993	118,213		
1116	38,715	190,863		
1118	43,663	273,183		
1120	48,837	365,625		
1122	54,237	468,642		

STAGE STORAGE TABLE

Infiltration Basin Outlet Structure Configuration – Type M Inlet

36" Outlet Pipe @ Elevation 1106.82 (Existing Pipe) 12" Diameter Orifice in Outlet Structure @ Elevation 1114.37 (Existing Orifice) Top of 2'x4' Concrete Outlet Structure @ Elevation 1118.0 40' Wide Emergency Spillway @ Elevation 1119.5 Top of 10' Wide Berm 1122.0

Using the outlet structure and the available volume in the storm water management facilities, the following routings were calculated:

Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Stage (ELEV)	Peak Storage Volume (cf)	
1	49.47	0	1113.6	104,568	
2	68.14	0.51	1114.7	144,010	
10	107.64	3.29	1115.6	177,298	
25	151.18	5.08	1116.7	218,817	
50	179.91	6.34	1117.7	259,906	
100	208.70	13.94	1118.3	287,181	

BASIN-2 - ROUTING SUMMARY

Computer printouts of the hydrographs and routing calculations are found in appendix D.

INFILTRATION BASIN-3 STAGE STORAGE TABLE

STAGE STORAGE TABLE				
Elevation (ft)	Area (sf)	Storage (cf)		
1104	16,343	0		
1106	19,264	35,563		
1108	22,065	76,857		
1110	24,864	123,753		
1112	27,661	176,248		
1114	30,578	234,457		
	,	,		

Infiltration Basin Outlet Structure Configuration – Type M Inlet

48" Outlet Pipe @ Elevation 1097.23 (Existing Pipe) 20" Diameter Orifice Plate over Outlet Pipe @ Elevation 1097.23 8" Diameter Orifice in Outlet Structure @ Elevation 1106.0 Top of 2'x4' Concrete Outlet Structure @ Elevation 1109.81 (Verify Existing Top Elev) 70' Wide Emergency Spillway @ Elevation 1112.0 Top of 10' Wide Berm 1114.0

Using the outlet structure and the available volume in the storm water management facilities, the following routings were calculated:

Meadows Landing Residential Development Post-Construction Storm Water Management Plan

Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Stage (ELEV)	Peak Storage Volume (cf)
1	39.17	1.00	1106.7	49,827
2	55.27	1.73	1107.4	64,246
10	98.86	3.32	1109.8	119,324
25	128.85	16.17	1110.3	130,946
50	153.49	37.08	1110.9	148,497
100	179.87	39.02	1111.9	174,635

BASIN-3 - ROUTING SUMMARY

POI-1 PEAK RATE COMPARISON – POI-1 – With PCSM Facilities

Storm Frequency	Pre-Development	Post-Development	Change In Peak
(YR)	Peak Rate (cfs)	Peak Rate (cfs)	Flow Rate (cfs)
1	33.31	9.57	-23.74
2	54.64	16.44	-38.20
10	116.42	61.64	-54.78
25	160.72	107.06	-53.66
50	198.38	124.18	-74.20
100	239.49	146.60	-92.89

POI-2 PEAK RATE COMPARISON – POI-2 – With PCSM Facilities

Storm Frequency (YR)	Pre-Development Peak Rate (cfs)	Post-Development Peak Rate (cfs)	Change In Peak Flow Rate (cfs)
1	23.01	15.55	-7.46
2	38.99	24.37	-14.62
10	85.79	49.42	-36.37
25	119.41	66.92	-52.49
50	148.27	81.54	-66.73
100	179.87	98.42	-81.45

POI-3 PEAK RATE COMPARISON – POI-3 – With PCSM Facilities

Storm Frequency	Pre-Development	Post-Development	Change In Peak
(YR)	Peak Rate (cfs)	Peak Rate (cfs)	Flow Rate (cfs)
1	14.72	4.83	-9.89
2	24.94	7.40	-17.54
10	54.89	16.66	-38.23
25	76.40	22.41	-53.99
50	94.86	48.97	-45.89
100	115.08	65.32	-49.76

	Pre-	Post-	Required	Treated Volume	Volume
	Development	Development	Control	Provided	Reduction
	Volume	Volume	Volume	(with BMPs)	(Cuft)
	(Cuft)	(No BMPs)	(Cuft)	Cuft)	
		(Cuft)			
POI-1	193,721	310,704	116,984	118,680	1,696
POI-2	138,420	241,708	103,288	103,303	15
POI-3	93,995	148,368	54,374	55,926	1,552

2-YR RUNOFF VOUME

Because the net 2-yr runoff volume is decreased from the pre-development to post-development conditions, it is implied that adequate volume storage is provided by the PCSM facilities. Calculations for runoff volume and volume detention provided can be found on BMP Worksheets 4 and 5 in the appendices of this report. Calculations and hydrographs to support the peak rates tabulated in the report narrative can be found in the appendices as well

BMP Volume Credits

Post construction, the sediment basin will be converted to an infiltration basin designed to detain and slowly infiltrate the additional 2-year volume, thus providing the detention and infiltration necessary to reduce runoff volumes to below pre-development levels for the 2-year storm. This approach will maximize the opportunity for infiltration, evapotranspiration, and uptake and use by vegetation of this additional runoff volume. The storm water management facilities will release runoff slowly, providing detention, for the 1-, 2-, 10-, 25-, 50-, and 100- year storms, to manage the peak discharge rates to below pre-development rates. The reduction of runoff rate and volume can be seen numerically in the previous tables accompanying this narrative.

Storm Sewer System

A storm sewer system will capture impervious road storm water runoff and convey the runoff to the infiltration basins. Once routed through the basin, that runoff which is not infiltrated through the infiltration media and which accumulates to a volume that crests at least the lowest orifice, will be routed through the outlet structure and eventually discharge to the existing streams. The storm sewer system has been designed to convey the **100-year** storm without surcharging the inlet rim elevation.

Conclusion and Act 167 Consistency

From the calculations and report as submitted, the proposed Basin for the development will reduce storm water peak flow rates to less than the pre-developed conditions. According to the South Strabane Township Stormwater Management Ordinance and the storm water requirements of the Pennsylvania Department of Environmental Protection (Chapter 102), the runoff rate leaving a proposed development site may not exceed the runoff rate that existed prior to construction. This standard was analyzed and demonstrated to be achievable at the site for the 1-, 2-, 10-, 25-, 50-, and 100-year design storms. A reduction in the post-development total runoff volume for all storms equal to or less than the 2-year 24-hour event was achieved for the drainage area within the proposed development. Due to existing site topography, the site drains to unnamed tributaries to Chartiers Creek, classified as Warm Water Fishes (WWF). The PA Water Plan watershed is Upper Ohio River. Washington County does have an approved ACT 167 Plan.

The following narrative is in accordance with PA Title 25, Chapter 102, Section 102.8, Post Construction Stormwater Management Requirements:

102.8(b)(1) Preserve the integrity of stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream.

The proposed plan utilizes structural and non-structural BMP's which reduce runoff volume and rate and provide water quality measures.

102.8(b)(2) Prevent an increase in the rate of storm water runoff.

As shown in the tables in the PCSM report narrative along with supporting calculations in Appendix D, the proposed detention basin will reduce storm water discharge rates to less than the historical peak rates from the site for the 1-, 2-, 10-, 25-, 50-, and 100-year design storms.

102.8(b)(3) Minimize an increase in storm water runoff volume.

As shown in the tables in the PCSM report narrative along with supporting calculations from the PADEP Worksheets in Appendix E, the proposed detention basin will reduce runoff volume for up the 2-year storm event.

102.8(b)(4) Minimize impervious areas.

The proposed development was designed in a manner to reduce paving to the largest extent possible.

102.8(b)(5) Maximize the protection of existing drainage features and existing vegetation.

The existing drainage features and vegetation will be protected by disturbing only those areas required for construction of the site.

102.8(b)(6) Minimize land clearing and grading.

Land clearing and grading will be minimized by clearing and grading only those areas required for construction of the site.

102.8(b)(7) Minimize soil compaction.

Contractors should spend minimal time in areas that are not to be graded, in order to minimize soil compaction.

102.8(b)(8) Utilize other structural or nonstructural BMPs that prevent or minimize changes in storm water runoff.

Areas of proposed disturbance will be revegetated. Existing vegetation on the property will be protected by clearly delineating the limit of disturbance on the plans. The site will be revegetated with an approved landscape plan.

- 102.8.f The PCSM Plan must contain drawings and a narrative consistent with the requirements of this chapter. The PCSM Plan shall be designed to minimize the threat to human health, safety and the environment to the greatest extent practicable. PCSM Plans must contain at a minimum the following:
- 102.8.f.1 The existing topographic features of the project site and immediate surrounding area.

Existing contours are shown on the attached PCSM Plan at 2 foot intervals.

102.8.f.2 The types, depth, slope, locations and limitations of the soils and geological

formations.

Refer to Appendix B for soils information.

102.8.f.3 The characteristics of the project site, including the past, present and proposed land uses and the proposed alteration to the project site.

The current and past land use (over 50 years) of the site has been a primarily wooded area with some meadow. The proposed site consists of houses and impervious drive ways, open space/lawn areas, storm water basins, utility installation, and erosion and sediment control practices.

Topsoil and debris will be stripped and stockpiled at the approximate locations shown on the Erosion and Sediment Control Plan. Stockpiled topsoil will be utilized when construction operations are complete.

102.8.f.4 An identification of the net change in volume and rate of storm water from preconstruction hydrology to post construction hydrology for the entire project site and each drainage area.

> The watershed boundaries are shown by the existing topography and proposed grades on the attached PCSM Plan. Infiltration basins will be installed to control the rate of runoff from the proposed disturbance. The post-development runoff rate will be less than the predevelopment rate for the 1-, 2-, 10-, 25-, 50-, and 100-year storm events. According to Chapter 102 of the Pennsylvania Department of Environmental Protection, the 2-year runoff volume increase must be stored on-site. Refer to the PCSM plans for details of these

facilities. The methods used to calculate runoff include the SCS method and methods described in the DEP Erosion and Sediment Pollution Control Manual.

102.8.f.5 An identification of the location of surface waters of this Commonwealth, which may receive runoff within or from the project site and their classification under Chapter 93 (relating to water quality standards).

The receiving streams are UNT to Chartiers Creek, classified as Warm Water Fishes (WWF). The PA Water Plan watershed is Upper Ohio River. Refer to Appendix A, Site Location Map, for stream locations. The project site discharges to waters that are classified as impaired due to

HABITAT MODIFICATION - OTHER THAN HYDROMODIFICATION - SILTATION ; HABITAT MODIFICATION - OTHER THAN HYDROMODIFICATION – TURBIDITY

URBAN RUNOFF/STORM SEWERS – SILTATION

102.8.f.6 A written description of the location and type of PCSM BMPs including construction details for permanent storm water BMPs including permanent stabilization specifications and locations.

Permanent control measures include three (3) infiltration basins (converted from sediment basins), interceptor & diversion channels, riprap aprons, and permanent seeding. Disturbed areas will be stabilized in accordance with temporary, permanent and/or steep slope seeding specifications.

102.8.f.7 A sequence of PCSM BMP implementation or installation in relation to earth disturbance activities of the project site and a schedule of inspections for critical stages of PCSM BMP installation.

PCSM Construction Sequence:

- 1. Once grading operations are complete, permanently seed and mulch all disturbed areas per the seeding specifications.
- 2. Convert Sediment Basin to Infiltration Basin by: (Critical Stage: A licensed professional or designee shall be on-site to oversee the installation of the detention basin, including the permanent outlet structure, outfall protection, emergency spillway, and grading.)
- 1) Dewater as necessary using pumped water filter bag.
- 2) Remove all accumulated sediment from the sediment basin.
- 3) Remove the skimmer systems from the from the sediment basins.
- 4) Remove orifice coverings installed during E&S phase.
- 5) Install 2' underdrain system

102.8.f.8 Supporting calculations.

Supporting calculations can be found in the appendices.

102.8.f.9 Plan drawings.

Refer to the Post Construction Storm Water Management Plan.

102.8.f.10 A long-term operation and maintenance schedule, which provides for inspection of PCSM BMPs, including the repair, replacement, or other routine maintenance of the PCSM BMPs to ensure proper function and operation. The program must provide for completion of a written report documenting each inspection and all BMP repair and maintenance activities and how access to the PCSM BMPs will be provided.

Refer to Appendix G for a long-term operation and maintenance schedule.

102.8.f.11 Procedures which ensure that the proper measures for the recycling or disposal of materials associated with or from the PCSM BMPs are in accordance with Department laws, regulations and requirements.

A differentiation must be identified between construction waste (waste generated before the site is entirely stabilized, completed, and converted) to the post construction phase.

Erosion control wastes differ from post constructions generated materials and must be addressed and handled separately from the traditional form of recycling criteria that often is outlined in erosion and sedimentation control plan guidelines.

Regarding wastes generated after the plan is fully operational, all wastes from post construction BMPs, such as silt/gravel, trash/litter/floatables, grass clippings, branches, leaves, etc. shall be removed from the site and recycled or disposed of in accordance with the departments solid waste management regulations at Title 25 PA Code 260.1 et seq., 271.1., and 287.1 et seq. No wastes or other materials shall be burned, buried, dumped, or discharged at the site.

102.8.f.12 An identification of naturally occurring geologic formations or soil conditions that may have the potential to cause pollution after earth disturbance activities are completed and PCSM BMPs are operational and development of a management plan to avoid or minimize potential pollution and its impacts.

A review of available resources does not indicate the presence of any current or historical deep mining actives underlying the site.

There are no know geologic formations or soil conditions that have potential to cause pollution. Refer to Appendix B for soil limitations and resolutions to any limitations.

102.8.f.13 An identification of potential thermal impacts from post construction storm water to surface waters of this Commonwealth including BMPs to avoid, minimize or mitigate potential pollution from thermal impacts.

Establishment of permanent vegetation over all disturbed areas will further mitigate thermal impacts.

All storm water runoff from the infiltration basins will discharge to UNT to Chartiers Creek. Storm water runoff from other areas of the site will discharge to vegetated areas prior to entering any surface waters of the Commonwealth.

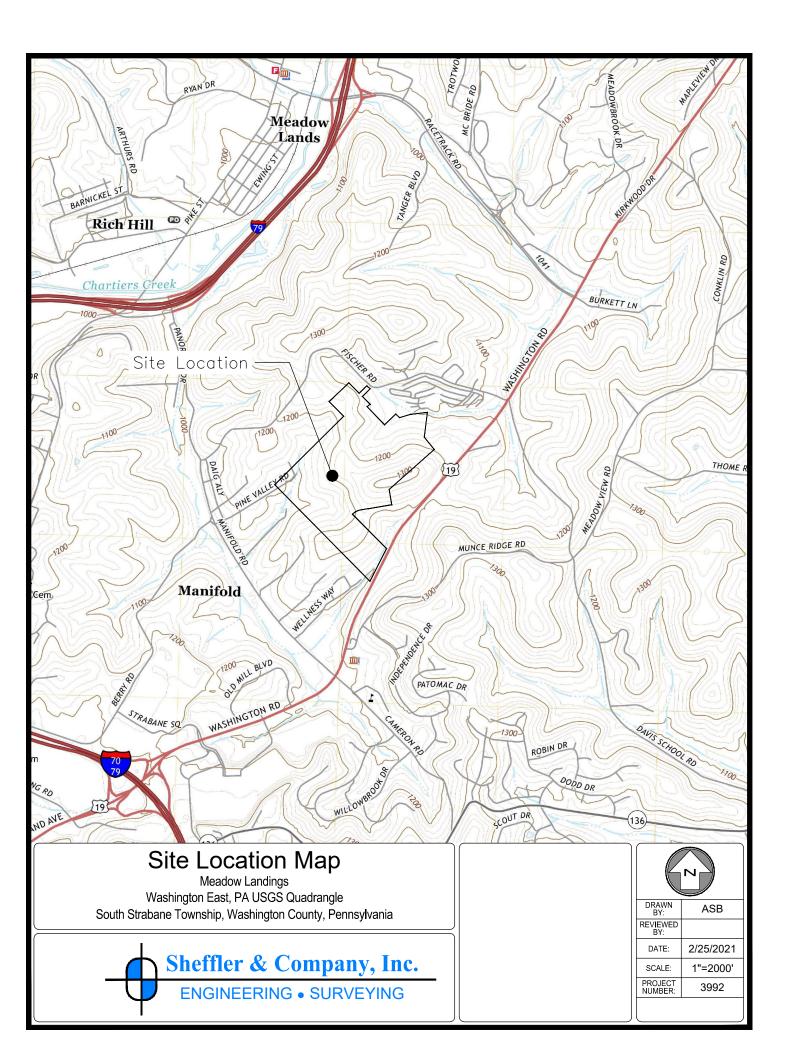
102.8.f.14 A riparian forest buffer management plan when required under Chapter 102.14 (relating to riparian buffer requirements).

The proposed work will not disturb areas within riparian forest buffers. Design precautions were implemented in an effort to eliminate such impacts.

102.8.g PCSM Plan storm water analysis.

Refer to appendices for pre and post development storm water analysis.

102.8.k Licensed professional oversight of critical stages.

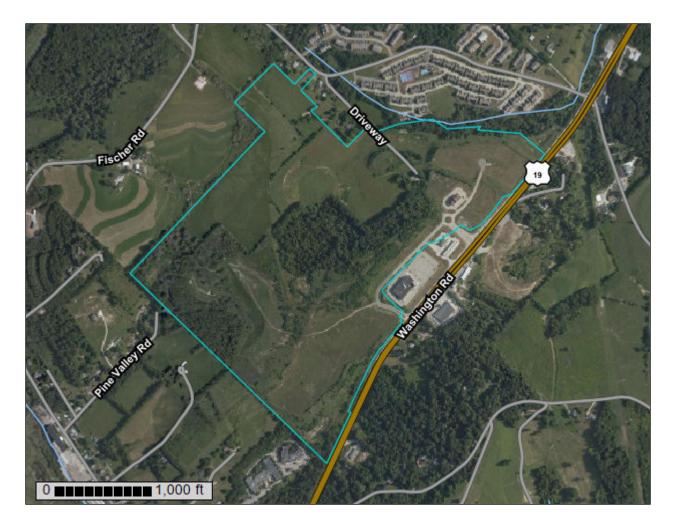

A licensed professional or designee shall oversee the installation of the infiltration pond basin, including the permanent outlet structure, outfall protections, underdrains, emergency spillways, and grading. A licensed professional or designee shall also verify establishment of permanent vegetation at the site.

102.8.m PCSM long-term operation and maintenance requirements.

Refer to Appendix for PCSM long-term operation and maintenance requirements.

APPENDIX A

SITE LOCATION MAP


APPENDIX B

SOILS REPORT

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for **Greene and** Washington Counties, Pennsylvania

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Greene and Washington Counties, Pennsylvania	14
CaB—Culleoka channery silt loam, 3 to 8 percent slopes	14
CaC—Culleoka channery silt loam, 8 to 15 percent slopes	15
CaD—Culleoka channery silt loam, 15 to 25 percent slopes	16
DoB—Dormont silt loam, 3 to 8 percent slopes	18
DoC—Dormont silt loam, 8 to 15 percent slopes	19
DtD—Dormont-Culleoka complex, 15 to 25 percent slopes	
Fa—Fluvaquents, loamy	23
GeB—Guernsey silt loam, 3 to 8 percent slopes	
GeC—Guernsey silt loam, 8 to 15 percent slopes	
GeD—Guernsey silt loam, 15 to 25 percent slopes	27
LbB—Library silty clay loam, 3 to 8 percent slopes	29
UdB—Udorthents, smoothed, gently sloping	
WeD—Weikert-Culleoka complex, 15 to 25 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP L	EGEND	MAP INFORMATION
rea of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:15,800.
oils Soil Map Unit Polygons Soil Map Unit Lines	 Very Stony Spot Wet Spot 	Please rely on the bar scale on each map sheet for map measurements.
Soil Map Unit Points	 △ Other ✓ Special Line Features 	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Special Point Features Image: Bold Stress <	Water Features Streams and Canals Transportation HI Rails Interstate Highways	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Gravel Pit Gravelly Spot	✓ US Routes ✓ Major Roads	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
 Landfill Lava Flow Marsh or swamp 	Local Roads Background Aerial Photography	Soil Survey Area: Greene and Washington Counties, Pennsylvania Survey Area Data: Version 18, Jun 5, 2020
 Mine or Quarry Miscellaneous Water 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
 Perennial Water Rock Outcrop 		Date(s) aerial images were photographed: May 7, 2020—Jul 5, 2020
Saline Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
 Severely Eroded Spot Sinkhole 		shifting of map unit boundaries may be evident.
Slide or Slip		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CaB	Culleoka channery silt loam, 3 to 8 percent slopes	3.1	1.8%
CaC	Culleoka channery silt loam, 8 to 15 percent slopes	1.0	0.6%
CaD	Culleoka channery silt loam, 15 to 25 percent slopes	7.0	4.0%
DoB	Dormont silt loam, 3 to 8 percent slopes	4.4	2.5%
DoC	Dormont silt loam, 8 to 15 percent slopes	49.0	27.9%
DtD	Dormont-Culleoka complex, 15 to 25 percent slopes	65.3	37.1%
Fa	Fluvaquents, loamy	1.8	1.0%
GeB	Guernsey silt loam, 3 to 8 percent slopes	4.5	2.6%
GeC	Guernsey silt loam, 8 to 15 percent slopes	3.1	1.8%
GeD	Guernsey silt loam, 15 to 25 percent slopes	19.1	10.9%
LbB	Library silty clay loam, 3 to 8 percent slopes	1.2	0.7%
UdB	Udorthents, smoothed, gently sloping	0.1	0.0%
WeD	Weikert-Culleoka complex, 15 to 25 percent slopes	16.3	9.2%
Totals for Area of Interest		176.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Greene and Washington Counties, Pennsylvania

CaB—Culleoka channery silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2s5gm Elevation: 720 to 1,610 feet Mean annual precipitation: 37 to 48 inches Mean annual air temperature: 49 to 53 degrees F Frost-free period: 173 to 206 days Farmland classification: All areas are prime farmland

Map Unit Composition

Culleoka and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Culleoka

Setting

Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy residuum weathered from sandstone and shale

Typical profile

Ap - 0 to 10 inches: channery silt loam
Bt - 10 to 19 inches: channery silt loam
BC - 19 to 26 inches: very channery silt loam
C - 26 to 31 inches: very channery silt loam
R - 31 to 41 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 24 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Dormont

Percent of map unit: 10 percent *Landform:* Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Linear Across-slope shape: Convex, linear Hydric soil rating: No

Lowell

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

CaC—Culleoka channery silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2s5gn Elevation: 720 to 1,610 feet Mean annual precipitation: 37 to 48 inches Mean annual air temperature: 49 to 53 degrees F Frost-free period: 173 to 206 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Culleoka and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Culleoka

Setting

Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy residuum weathered from sandstone and shale

Typical profile

Ap - 0 to 10 inches: channery silt loam Bt - 10 to 19 inches: channery silt loam BC - 19 to 26 inches: very channery silt loam C - 26 to 31 inches: very channery silt loam R - 31 to 41 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent *Depth to restrictive feature:* 24 to 40 inches to lithic bedrock *Drainage class:* Well drained

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Dormont

Percent of map unit: 15 percent Landform: Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Linear Across-slope shape: Convex, linear Hydric soil rating: No

Lowell

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

CaD—Culleoka channery silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2s5gp Elevation: 720 to 1,610 feet Mean annual precipitation: 37 to 48 inches Mean annual air temperature: 49 to 53 degrees F Frost-free period: 173 to 206 days Farmland classification: Not prime farmland

Map Unit Composition

Culleoka and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Culleoka

Setting

Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy residuum weathered from sandstone and shale

Typical profile

Ap - 0 to 10 inches: channery silt loam Bt - 10 to 19 inches: channery silt loam BC - 19 to 26 inches: very channery silt loam C - 26 to 31 inches: very channery silt loam R - 31 to 41 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 24 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Dormont

Percent of map unit: 15 percent Landform: Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Linear Across-slope shape: Convex, linear Hydric soil rating: No

Lowell

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

DoB—Dormont silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2s5gj Elevation: 800 to 1,540 feet Mean annual precipitation: 37 to 47 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 173 to 197 days Farmland classification: All areas are prime farmland

Map Unit Composition

Dormont and similar soils: 75 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dormont

Setting

Landform: Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Linear Across-slope shape: Concave, linear Parent material: Fine-loamy residuum weathered from limestone, sandstone, and shale

Typical profile

Ap - 0 to 11 inches: silt loam

Bt1 - 11 to 21 inches: silt loam

- Bt2 21 to 31 inches: silty clay loam
- Bt3 31 to 46 inches: channery silty clay loam
- Bt4 46 to 62 inches: channery silty clay loam

BC - 62 to 75 inches: channery silty clay loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.66 in/hr)
Depth to water table: About 24 to 44 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Lowell

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Culleoka

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Guernsey

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

DoC—Dormont silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2s5gh Elevation: 800 to 1,540 feet Mean annual precipitation: 37 to 47 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 173 to 197 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Dormont and similar soils: 70 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dormont

Setting

Landform: Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Linear

Across-slope shape: Concave, linear

Parent material: Fine-loamy residuum weathered from limestone, sandstone, and shale

Typical profile

Ap - 0 to 11 inches: silt loam Bt1 - 11 to 21 inches: silt loam Bt2 - 21 to 31 inches: silty clay loam Bt3 - 31 to 46 inches: channery silty clay loam Bt4 - 46 to 62 inches: channery silty clay loam BC - 62 to 75 inches: channery silty clay loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.66 in/hr)
Depth to water table: About 24 to 44 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Culleoka

Percent of map unit: 15 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Lowell

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Guernsey

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, head slope Down-slope shape: Concave, linear Across-slope shape: Linear, concave Hydric soil rating: No

DtD-Dormont-Culleoka complex, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2s5gy Elevation: 200 to 1,300 feet Mean annual precipitation: 32 to 48 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Dormont and similar soils: 45 percent Culleoka and similar soils: 37 percent Minor components: 18 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dormont

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, head slope Down-slope shape: Linear Across-slope shape: Linear, concave Parent material: Fine-loamy residuum weathered from limestone, sandstone, and shale

Typical profile

Ap - 0 to 11 inches: silt loam Bt1 - 11 to 21 inches: silt loam Bt2 - 21 to 31 inches: silty clay loam Bt3 - 31 to 46 inches: channery silty clay loam Bt4 - 46 to 62 inches: channery silty clay loam BC - 62 to 75 inches: channery silty clay loam

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.66 in/hr)
Depth to water table: About 24 to 44 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: D Hydric soil rating: No

Description of Culleoka

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope, nose slope, head slope Down-slope shape: Convex Across-slope shape: Convex, linear Parent material: Fine-loamy residuum weathered from sandstone and shale

Typical profile

Ap - 0 to 10 inches: channery silt loam Bt - 10 to 19 inches: channery silt loam BC - 19 to 26 inches: very channery silt loam C - 26 to 31 inches: very channery silt loam R - 31 to 41 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 24 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Lowell

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope, head slope, nose slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Guernsey

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: No

Thorndale

Percent of map unit: 3 percent Landform: Depressions, drainageways Landform position (two-dimensional): Footslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Fa—Fluvaquents, loamy

Map Unit Setting

National map unit symbol: I64w Elevation: 700 to 1,340 feet Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Fluvaquents and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Fluvaquents

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 6 inches: silt loam *H2 - 6 to 42 inches:* silt loam *H3 - 42 to 60 inches:* loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: Frequent
Frequency of ponding: None

Available water capacity: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Newark

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Melvin

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Huntington

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

GeB—Guernsey silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2wdrv Elevation: 670 to 1,860 feet Mean annual precipitation: 38 to 43 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 175 to 198 days Farmland classification: All areas are prime farmland

Map Unit Composition

Guernsey and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Guernsey

Setting

Landform: Ridges Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear

Parent material: Colluvium derived from limestone and shale over residuum weathered from limestone and shale

Typical profile

Ap - 0 to 8 inches: silt loam BE - 8 to 15 inches: silt loam Bt1 - 15 to 22 inches: silty clay loam Bt2 - 22 to 37 inches: silty clay Btg - 37 to 54 inches: silty clay loam 2C - 54 to 60 inches: channery silt loam 2Cr - 60 to 70 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 59 to 62 inches to paralithic bedrock
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Dormont

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Culleoka

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Westmoreland

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope *Down-slope shape:* Convex *Across-slope shape:* Linear *Hydric soil rating:* No

GeC—Guernsey silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2t32f Elevation: 600 to 1,880 feet Mean annual precipitation: 37 to 49 inches Mean annual air temperature: 47 to 53 degrees F Frost-free period: 165 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Guernsey and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Guernsey

Setting

Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Interfluve, crest, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Colluvium derived from limestone and shale over residuum weathered from limestone and shale

Typical profile

Ap - 0 to 8 inches: silt loam

BE - 8 to 15 inches: silt loam

Bt1 - 15 to 22 inches: silty clay loam

Bt2 - 22 to 37 inches: silty clay

Btg - 37 to 54 inches: silty clay loam

2C - 54 to 60 inches: channery silt loam

2Cr - 60 to 70 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 59 to 62 inches to paralithic bedrock
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Coshocton

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Berks

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Westmoreland

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

GeD—Guernsey silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2t32g Elevation: 670 to 2,510 feet Mean annual precipitation: 37 to 52 inches Mean annual air temperature: 47 to 53 degrees F Frost-free period: 165 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Guernsey and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Guernsey

Setting

Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Colluvium derived from limestone and shale over residuum weathered from limestone and shale

Typical profile

Ap - 0 to 8 inches: silt loam BE - 8 to 15 inches: silt loam Bt1 - 15 to 22 inches: silty clay loam Bt2 - 22 to 37 inches: silty clay Btg - 37 to 54 inches: silty clay loam 2C - 54 to 60 inches: channery silt loam 2Cr - 60 to 70 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 59 to 62 inches to paralithic bedrock
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Culleoka

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Westmoreland

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Berks

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, interfluve, side slope, head slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

LbB—Library silty clay loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1655 Elevation: 800 to 1,300 feet Mean annual precipitation: 36 to 46 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 130 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Library and similar soils: 70 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Library

Setting

Landform: Hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Clayey residuum weathered from limestone and shale

Typical profile

Ap - 0 to 11 inches: silt loam *Btg - 11 to 62 inches:* silty clay *Cg - 62 to 76 inches:* channery silty clay

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Guernsey

Percent of map unit: 15 percent Landform: Hills Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Base slope Down-slope shape: Linear, concave Across-slope shape: Concave Hydric soil rating: No

Culleoka

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Dormont

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

UdB—Udorthents, smoothed, gently sloping

Map Unit Setting

National map unit symbol: 1659 Elevation: 740 to 1,500 feet Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 99 percent Minor components: 1 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting

Down-slope shape: Linear *Across-slope shape:* Linear *Parent material:* Man made and altered materials from mixed rock types

Typical profile

H1 - 0 to 6 inches: very channery silt loam *H2 - 6 to 60 inches:* very channery silt loam

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 40 to 72 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Wet spots

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

WeD—Weikert-Culleoka complex, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: I65m Elevation: 500 to 1,600 feet Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Weikert and similar soils: 50 percent *Culleoka and similar soils:* 40 percent *Minor components:* 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Weikert

Setting

Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Residuum weathered from siltstone

Typical profile

H1 - 0 to 7 inches: channery silt loam
H2 - 7 to 19 inches: extremely channery silt loam
H3 - 19 to 23 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Hydric soil rating: No

Description of Culleoka

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from nonacid siltstone, fine-grained sandstone, and shale

Typical profile

Ap - 0 to 10 inches: channery silt loam *Bt - 10 to 26 inches:* channery silt loam *C - 26 to 31 inches:* very channery silt loam

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches

Frequency of flooding: None *Frequency of ponding:* None *Available water capacity:* Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Brooke

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Dormont

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope, nose slope, head slope Down-slope shape: Linear Across-slope shape: Concave, linear Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

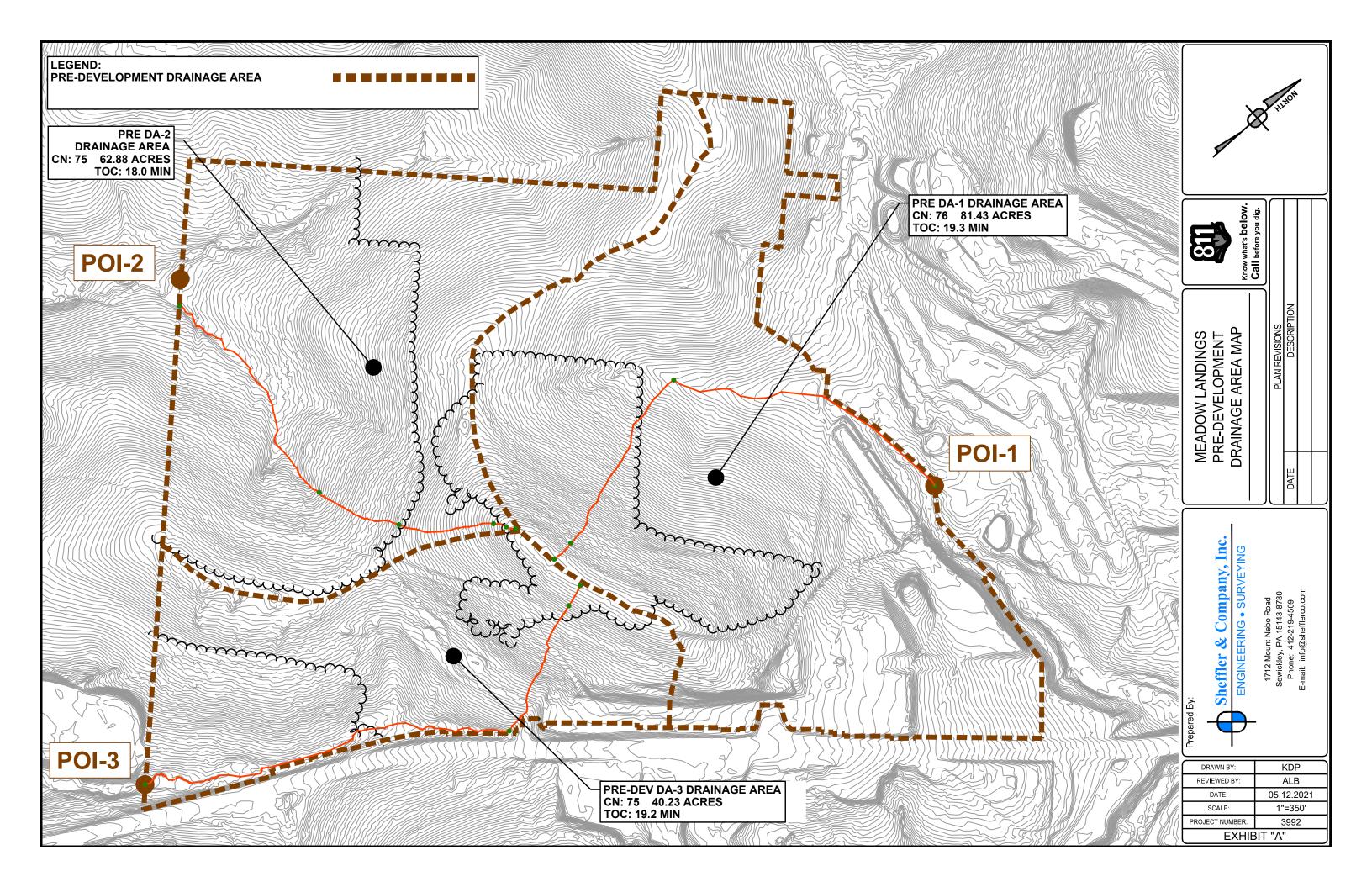
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

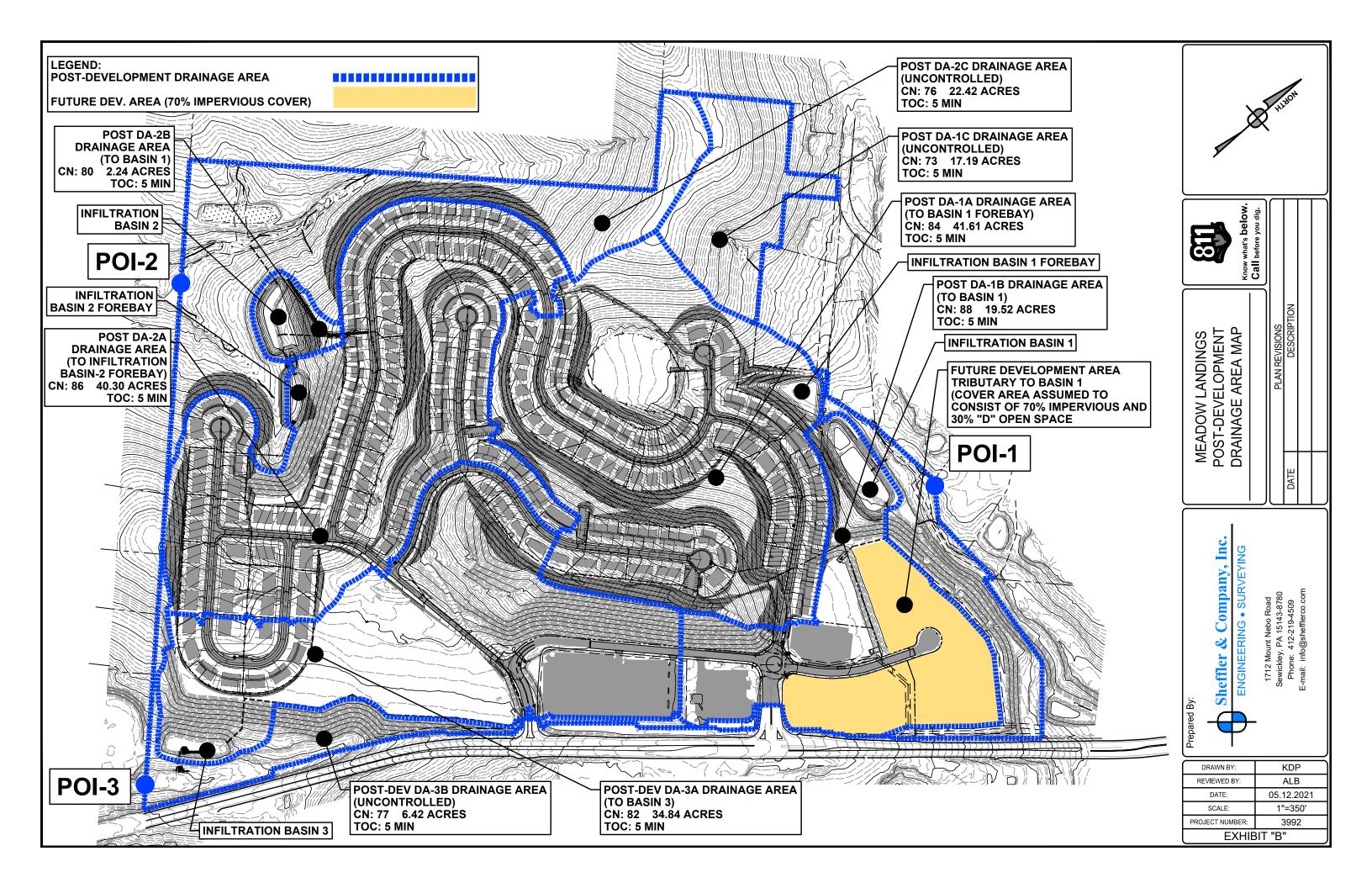
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084


United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C

PRE AND POST DEVELOPMENT DRAINAGE AREA MAPS

APPENDIX D

PRE AND POST DEVELOPMENT HYDROGRAPHS

CURVE NUMBER CALCULATION Project: Meadows Landing Project Number: 3992

PRE-DEVELOPMENT RCN

Sub-basin	Landuse		Soil	Group		Subtotal	CN by Landuse				Sub-CN	Weighted CN
Sub-basili	Lanuuse	Α	В	С	D	Subiotal	Α	В	С	D	Sub-Civ	Weighted ON
	Impervious			0.00		0.00	98	98	98	98	98	
PRE DA-1	Open Space			0.00		0.00	39	61	74	80	74	76
PRE DA-1	Meadow	0.07	1.83	14.46	47.18	63.54	30	58	71	78	76	
	Woodlands			0.00	17.89	17.9	36	55	70	77	77	
1 Total		0.07	1.83	14.46	65.07	81.43						
	Impervious			0.00		0.00	98	98	98	98	98	
PRE DA-2	Open Space			0.00		0.00	39	61	74	80	74	75
PRE DA-2	Meadow		0.19	11.88	9.74	21.81	30	58	71	78	74	75
	Woodlands		3.25	1.54	36.28	41.07	36	55	70	77	75	
2 Total		0.00	3.44	13.42	46.02	62.88						
	Impervious			0.00		0.00	98	98	98	98	98	
PRE DA-3	Open Space			0.00		0.00	39	61	74	80	74	75
TRE DA-5	Meadow		4.60	0.04	21.79	26.43	30	58	71	78	75	75
	Woodlands			0.00	13.80	13.80	36	55	70	77	77	
3 Total		0.00	4.60	0.04	35.59	40.23			-			
SITE OVERALL		0.07	9.87	27.92	146.68	184.54						

POST-DEVELOPMENT RCN												
Sub-basin	Landuse			Group		Subtotal		CN by I			Sub-CN	Weighted CN
		Α	В	C	D		Α	В	C	D		
POST DA-1A TO	Impervious		2.960	4.970	2.0	9.93	98	98	98	98	98	
BASIN 1	Open Space				24.94	24.94	39	61	74	80	80	84
FOREBAY	Meadow			2.63	3.63	6.26	30	58	71	78	75	
	Woodlands				0.5	0.48	36	55	70	77	77	
Total		0.00	2.96	7.60	31.05	41.61						
	Impervious		3.63	6.52		10.15	98	98	98	98	98	
POST DA-1B TO	Open Space				2.80	2.80	39	61	74	80	80	88
BASIN 1	Meadow			2.63	3.46	6.09	30	58	71	78	75	
	Woodlands				0.5	0.48	36	55	70	77	77	
Total		0.00	3.63	9.15	6.74	19.52						
	Impervious			0.29	0.00	0.29	98	98	98	98	98	
POST DA-1C	Open Space			0.0	1.37	1.37	39	61	74	80	80	73
UNCONTROLLED	Meadow	0.070	1.59	7.99	5.88	15.53	30	58	71	78	72	13
	Woodlands			0.0		0.0	36	55	70	77	70	
Total		0.07	1.59	8.28	7.25	17.19						
POI-1 Total		0.07	8.18	25.03	45.04	78.32						
POST DA-2A TO	Impervious			11.46	2.51	13.97	98	98	98	98	98	
BASIN 2	Open Space			0.0	22.65	22.65	39	61	74	80	80	86
FOREBAY	Meadow		0.030	0.0	0.15	0.18	30	58	71	78	75	00
FUREDAT	Woodlands			0.0	3.51	3.51	36	55	70	77	77	
Total	•	0.00	0.03	11.46	28.81	40.30						
	Impervious			0.00		0.00	98	98	98	98	98	
POST DA-2B TO	Open Space				2.24	2.24	39	61	74	80	80	
BASIN 2	Meadow			0.0		0.00	30	58	71	78	71	80
	Woodlands			0.0		0.00	36	55	70	77	70	
Total		0.00	0.00	0.00	2.24	2.24						
	Impervious			0.0	0.00	0.00	98	98	98	98	98	
POST DA-2C	Open Space			0.0	4.74	4.74	39	61	74	80	80	
	Meadow			5.01	0.69	5.70	30	58	71	78	72	76
	Woodlands			0.0	11.98	12.0	36	55	70	77	77	
Total		0.00	0.00	5.01	17.41	22.42						
POI-2 Total		0.00	0.03	16.47	48.46	64.96						
	Impervious			7.13	0.54	7.67	98	98	98	98	98	
POST DA-3A TO	Open Space			0.0	8.73	8.73	39	61	74	80	80	
BASIN 3	Meadow		1.13	0.0	11.37	12.50	30	58	71	78	76	82
Dr. Cirt C	Woodlands		0.01	0.0	5.93	5.94	36	55	70	70	70	
Total		0.00	1.14	7.13	26.57	34.84	00	55	10			
10101	Impervious	0.00	1.14	0.0	0.00	0.00	98	98	98	98	98	
POST DA-3B	Open Space			0.0	0.60	0.60	39	90 61	90 74	90 80	90 80	
UNCONTROLLED	Meadow		0.19	0.0	1.30	1.49	30	58	74	78	75	77
ONSONTROLLED	Woodlands		0.15	0.0	4.33	4.33	36	55	70	70	75	
Total	wooulanus	0.00	0.19	0.0	4.33 6.23	4.33 6.42	30	55	70	11	11	
POI-3 Total		0.00	1.33	7.13	32.80	41.26	_	_	_			
OVERALL		0.00	1.33 9.54	48.63	32.80 126.30	41.26	_		_			
OVERALL		0.07	9.54	48.63	126.30	184.54						

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday,	07	/ 30	/ 2021
i naay,	0.	, 00	,

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, PRE DA-1	. 4
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, POST DA-1A	6
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY	. 7
Pond Report - BASIN 1 FOREBAY	8
Hydrograph No. 4, SCS Runoff, POST DA-1B	9
Hydrograph No. 5, Combine, TO BASIN 1	10
Hydrograph No. 6, Reservoir, BASIN 1	11
Pond Report - BASIN 1	
Hydrograph No. 7, SCS Runoff, POST DA-1C	
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM	
Hydrograph No. 9, Combine, POST DA-1 NO PCSM	
Hydrograph No. 10, SCS Runoff, PRE DA-2	16
TR-55 Tc Worksheet	
Hydrograph No. 11, SCS Runoff, POST DA-2A	
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY	19
Pond Report - BASIN 2 FOREBAY	20
Hydrograph No. 13, SCS Runoff, POST DA-2B	21
Hydrograph No. 14, Combine, TO BASIN 2	
Hydrograph No. 15, Reservoir, BASIN 2	
Pond Report - BASIN 2	
Hydrograph No. 16, SCS Runoff, POST DA-2C	
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM	
Hydrograph No. 18, Combine, POST DA-2 NO PCSM	
Hydrograph No. 19, SCS Runoff, PRE DA-3	
TR-55 Tc Worksheet	
Hydrograph No. 20, SCS Runoff, POST DA-3A	
Hydrograph No. 21, Reservoir, BASIN 3	
Pond Report - BASIN 3	
Hydrograph No. 22, SCS Runoff, POST DA-3B	
Hydrograph No. 23, Combine, POST DA-3 W/ PCSM	
Hydrograph No. 24, Combine, POST DA-3 NO PCSM	35

Summary Report	36
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PRE DA-1	
Hydrograph No. 2, SCS Runoff, POST DA-1A	
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY	
Hydrograph No. 4, SCS Runoff, POST DA-1B	
Hydrograph No. 5, Combine, TO BASIN 1	

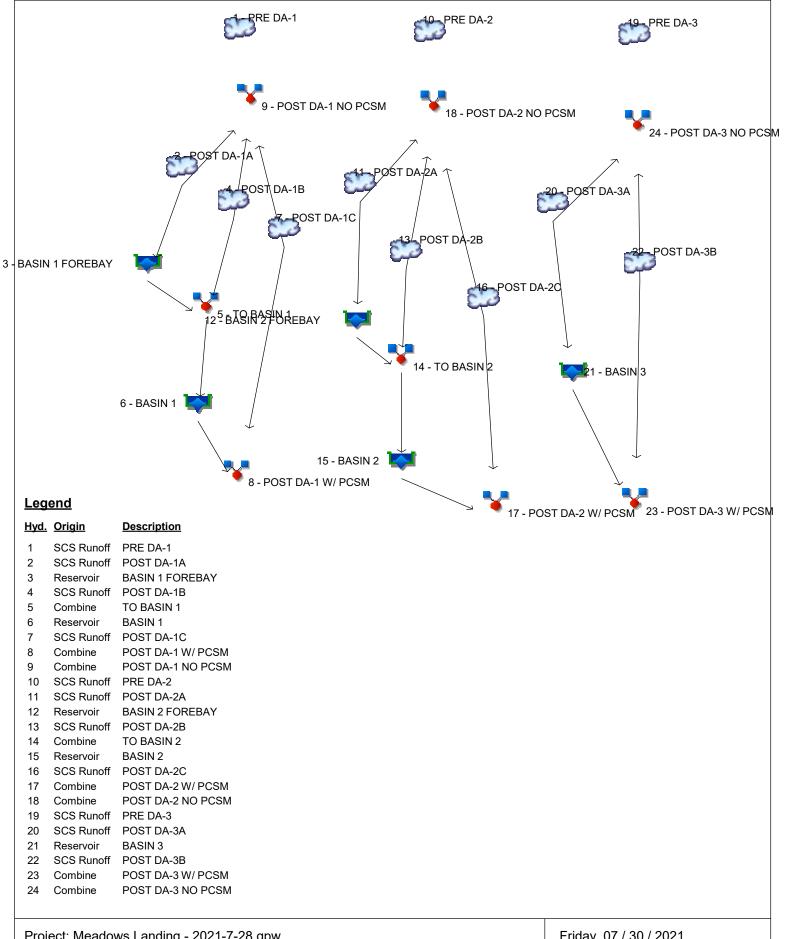
Hydrograph No. 6, Reservoir, BASIN 1	42
Hydrograph No. 7, SCS Runoff, POST DA-1C	43
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM	44
Hydrograph No. 9, Combine, POST DA-1 NO PCSM	45
Hydrograph No. 10, SCS Runoff, PRE DA-2	46
Hydrograph No. 11, SCS Runoff, POST DA-2A	47
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY	48
Hydrograph No. 13, SCS Runoff, POST DA-2B	49
Hydrograph No. 14, Combine, TO BASIN 2	
Hydrograph No. 15, Reservoir, BASIN 2	51
Hydrograph No. 16, SCS Runoff, POST DA-2C	52
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM	53
Hydrograph No. 18, Combine, POST DA-2 NO PCSM	54
Hydrograph No. 19, SCS Runoff, PRE DA-3	55
Hydrograph No. 20, SCS Runoff, POST DA-3A	56
Hydrograph No. 21, Reservoir, BASIN 3	57
Hydrograph No. 22, SCS Runoff, POST DA-3B	58
Hydrograph No. 23, Combine, POST DA-3 W/ PCSM	59
Hydrograph No. 24, Combine, POST DA-3 NO PCSM	60

10 - Year

Summary Report	
Hydrograph No. 1, SCS Runoff, PRE DA-1	
Hydrograph No. 2, SCS Runoff, POST DA-1A	63
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY	64
Hydrograph No. 4, SCS Runoff, POST DA-1B	65
Hydrograph No. 5, Combine, TO BASIN 1	66
Hydrograph No. 6, Reservoir, BASIN 1	67
Hydrograph No. 7, SCS Runoff, POST DA-1C	
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM	
Hydrograph No. 9, Combine, POST DA-1 NO PCSM	70
Hydrograph No. 10, SCS Runoff, PRE DA-2	71
Hydrograph No. 11, SCS Runoff, POST DA-2A	72
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY	
Hydrograph No. 13, SCS Runoff, POST DA-2B	
Hydrograph No. 14, Combine, TO BASIN 2	
Hydrograph No. 15, Reservoir, BASIN 2	76
Hydrograph No. 16, SCS Runoff, POST DA-2C	77
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM	
Hydrograph No. 18, Combine, POST DA-2 NO PCSM	
Hydrograph No. 19, SCS Runoff, PRE DA-3	
Hydrograph No. 20, SCS Runoff, POST DA-3A	81
Hydrograph No. 21, Reservoir, BASIN 3	
Hydrograph No. 22, SCS Runoff, POST DA-3B	83
Hydrograph No. 23, Combine, POST DA-3 W/ PCSM	
Hydrograph No. 24, Combine, POST DA-3 NO PCSM	85

1mary Report

Hydrograph Reports	87
Hydrograph No. 1, SCS Runoff, PRE DA-1	
Hydrograph No. 2, SCS Runoff, POST DA-1A	
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY	89
Hydrograph No. 4, SCS Runoff, POST DA-1B	
Hydrograph No. 5, Combine, TO BASIN 1	
Hydrograph No. 6, Reservoir, BASIN 1	
Hydrograph No. 7, SCS Runoff, POST DA-1C	
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM	
Hydrograph No. 9, Combine, POST DA-1 NO PCSM	
Hydrograph No. 10, SCS Runoff, PRE DA-2	
Hydrograph No. 11, SCS Runoff, POST DA-2A	
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY	
Hydrograph No. 13, SCS Runoff, POST DA-2B	
Hydrograph No. 14, Combine, TO BASIN 2 1	
	01
Hydrograph No. 16, SCS Runoff, POST DA-2C 1	
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM 1	
Hydrograph No. 18, Combine, POST DA-2 NO PCSM 1	
Hydrograph No. 19, SCS Runoff, PRE DA-3 1	
Hydrograph No. 20, SCS Runoff, POST DA-3A 1	
Hydrograph No. 21, Reservoir, BASIN 3 1	
Hydrograph No. 22, SCS Runoff, POST DA-3B 1	
Hydrograph No. 23, Combine, POST DA-3 W/ PCSM 1	
Hydrograph No. 24, Combine, POST DA-3 NO PCSM 1	10


	111
Hydrograph Reports	112
Hydrograph No. 1, SCS Runoff, PRE DA-1	112
Hydrograph No. 2, SCS Runoff, POST DA-1A	
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY	114
Hydrograph No. 4, SCS Runoff, POST DA-1B	115
Hydrograph No. 5, Combine, TO BASIN 1	
Hydrograph No. 6, Reservoir, BASIN 1	117
Hydrograph No. 7, SCS Runoff, POST DA-1C	
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM	119
Hydrograph No. 9, Combine, POST DA-1 NO PCSM	120
Hydrograph No. 10, SCS Runoff, PRE DA-2	121
Hydrograph No. 11, SCS Runoff, POST DA-2A	
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY	123
Hydrograph No. 13, SCS Runoff, POST DA-2B	124
Hydrograph No. 14, Combine, TO BASIN 2	125
Hydrograph No. 15, Reservoir, BASIN 2	126
Hydrograph No. 16, SCS Runoff, POST DA-2C	
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM	128
Hydrograph No. 18, Combine, POST DA-2 NO PCSM	129
Hydrograph No. 19, SCS Runoff, PRE DA-3	130
Hydrograph No. 20, SCS Runoff, POST DA-3A	
Hydrograph No. 21, Reservoir, BASIN 3	132
Hydrograph No. 22, SCS Runoff, POST DA-3B	133

Hydrograph No. 23, Combine, POST DA-3 W/ PCSM	134
Hydrograph No. 24, Combine, POST DA-3 NO PCSM	135

Summary Report
Hydrograph Reports
Hydrograph No. 1, SCS Runoff, PRE DA-1
Hydrograph No. 2, SCS Runoff, POST DA-1A
Hydrograph No. 3, Reservoir, BASIN 1 FOREBAY
Hydrograph No. 4, SCS Runoff, POST DA-1B
Hydrograph No. 5, Combine, TO BASIN 1 141
Hydrograph No. 6, Reservoir, BASIN 1 142
Hydrograph No. 7, SCS Runoff, POST DA-1C 143
Hydrograph No. 8, Combine, POST DA-1 W/ PCSM 144
Hydrograph No. 9, Combine, POST DA-1 NO PCSM 145
Hydrograph No. 10, SCS Runoff, PRE DA-2 146
Hydrograph No. 11, SCS Runoff, POST DA-2A 147
Hydrograph No. 12, Reservoir, BASIN 2 FOREBAY 148
Hydrograph No. 13, SCS Runoff, POST DA-2B 149
Hydrograph No. 14, Combine, TO BASIN 2 150
Hydrograph No. 15, Reservoir, BASIN 2 151
Hydrograph No. 16, SCS Runoff, POST DA-2C 152
Hydrograph No. 17, Combine, POST DA-2 W/ PCSM 153
Hydrograph No. 18, Combine, POST DA-2 NO PCSM
Hydrograph No. 19, SCS Runoff, PRE DA-3 155
Hydrograph No. 20, SCS Runoff, POST DA-3A 156
Hydrograph No. 21, Reservoir, BASIN 3 157
Hydrograph No. 22, SCS Runoff, POST DA-3B 158
Hydrograph No. 23, Combine, POST DA-3 W/ PCSM
Hydrograph No. 24, Combine, POST DA-3 NO PCSM
IDF Report 161

Watershed Model Schematic Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

1

Project: Meadows Landing - 2021-7-28.gpw

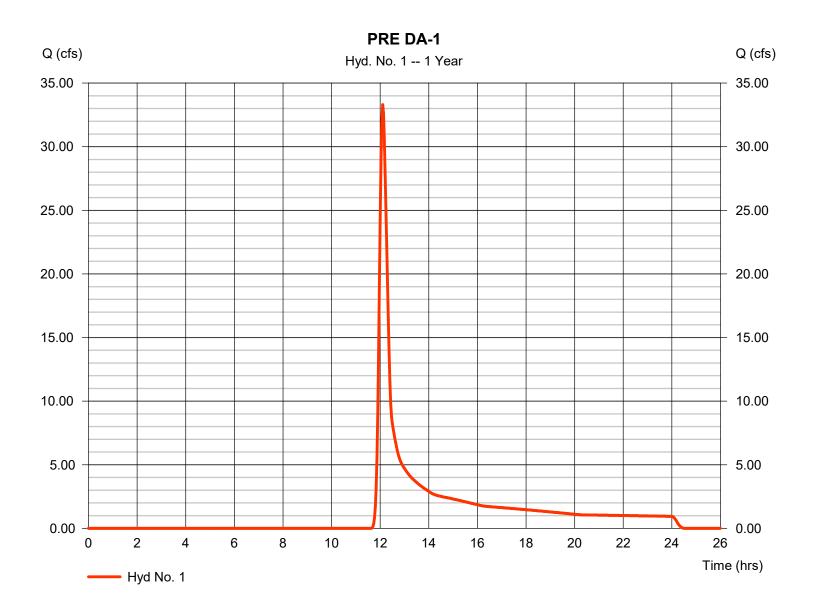
Friday, 07 / 30 / 2021

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

lyd. No.	Hydrograph	Inflow	Peak Outflow (cfs)								Hydrograph Description
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		33.31	54.64			116.42	160.72	198.38	239.49	PRE DA-1
2	SCS Runoff		53.68	73.81			128.23	164.71	194.49	226.23	POST DA-1A
3	Reservoir	2	6.817	32.51			104.40	139.74	166.97	195.54	BASIN 1 FOREBAY
4	SCS Runoff		32.29	42.80			69.76	87.22	101.32	116.25	POST DA-1B
5	Combine	3, 4	32.29	58.92			166.44	220.54	262.41	306.36	TO BASIN 1
6	Reservoir	5	3.206	8.667			59.50	77.95	87.45	98.54	BASIN 1
7	SCS Runoff		8.506	14.51			32.10	44.68	55.31	66.93	POST DA-1C
8	Combine	6, 7	9.572	16.44			65.20	114.36	125.39	147.52	POST DA-1 W/ PCSM
9	Combine	2, 4, 7,	94.41	130.68			229.05	295.81	350.59	409.23	POST DA-1 NO PCSM
10	SCS Runoff		23.01	38.99			85.79	119.41	148.27	179.87	PRE DA-2
11	SCS Runoff		59.07	79.50			134.12	169.91	198.96	229.81	POST DA-2A
12	Reservoir	11	47.66	66.15			102.93	145.05	171.88	198.55	BASIN 2 FOREBAY
13	SCS Runoff		2.169	3.151			5.837	7.702	9.260	10.94	POST DA-2B
14	Combine	12, 13	49.47	68.14			107.64	151.18	179.91	208.70	TO BASIN 2
15	Reservoir	14	0.000	0.508			3.286	5.084	6.335	13.94	BASIN 2
16	SCS Runoff		15.55	24.37			49.42	66.92	81.54	97.93	POST DA-2C
17	Combine	15, 16	15.55	24.37			49.42	66.92	81.54	98.42	POST DA-2 W/ PCSM
18	Combine	11, 13, 16,	76.79	106.87			188.44	244.06	289.75	338.67	POST DA-2 NO PCSM
19	SCS Runoff		14.72	24.94			54.89	76.40	94.86	115.08	PRE DA-3
20	SCS Runoff		39.17	55.27			98.86	128.85	153.49	179.87	POST DA-3A
21	Reservoir	20	0.999	1.726			3.318	16.17	37.08	39.01	BASIN 3
22	SCS Runoff		4.830	7.404			14.65	19.67	23.92	28.60	POST DA-3B
23	Combine	21, 22	4.830	7.404			16.66	22.41	48.97	65.32	POST DA-3 W/ PCSM
24	Combine	20, 22,	44.00	62.67			113.30	148.45	177.41	208.47	POST DA-3 NO PCSM
		1	1	1	1	1	1	1	1	1	1

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	33.31	2	726	124,276				PRE DA-1
2	SCS Runoff	53.68	2	718	107,347				POST DA-1A
3	Reservoir	6.817	2	738	65,663	2	1116.76	46,938	BASIN 1 FOREBAY
4	SCS Runoff	32.29	2	716	65,192				POST DA-1B
5	Combine	32.29	2	716	130,855	3, 4			TO BASIN 1
6	Reservoir	3.206	2	844	130,190	5	1114.22	53,060	BASIN 1
7	SCS Runoff	8.506	2	718	19,253				POST DA-1C
8	Combine	9.572	2	718	149,443	6, 7			POST DA-1 W/ PCSM
9	Combine	94.41	2	718	191,791	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	23.01	2	726	89,190				PRE DA-2
11	SCS Runoff	59.07	2	718	118,517				POST DA-2A
12	Reservoir	47.66	2	720	100,187	11	1121.12	31,870	BASIN 2 FOREBAY
13	SCS Runoff	2.169	2	718	4,381				POST DA-2B
14	Combine	49.47	2	720	104,568	12, 13			TO BASIN 2
15	Reservoir	0.000	2	n/a	0	14	1113.57	104,568	BASIN 2
16	SCS Runoff	15.55	2	718	32,767				POST DA-2C
17	Combine	15.55	2	718	32,767	15, 16			POST DA-2 W/ PCSM
18	Combine	76.79	2	718	155,665	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	14.72	2	726	57,063				PRE DA-3
20	SCS Runoff	39.17	2	718	78,481				POST DA-3A
21	Reservoir	0.999	2	950	42,887	20	1106.69	49,844	BASIN 3
22	SCS Runoff	4.830	2	718	10,027				POST DA-3B
23	Combine	4.830	2	718	52,914	21, 22			POST DA-3 W/ PCSM
24	Combine	44.00	2	718	88,508	20, 22,			POST DA-3 NO PCSM
Меа	adows Landir	ng - 2021-	-7-28.gpv	 ∾	Return F	Period: 1 Ye	 ear	Friday, 07	/ 30 / 2021


Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

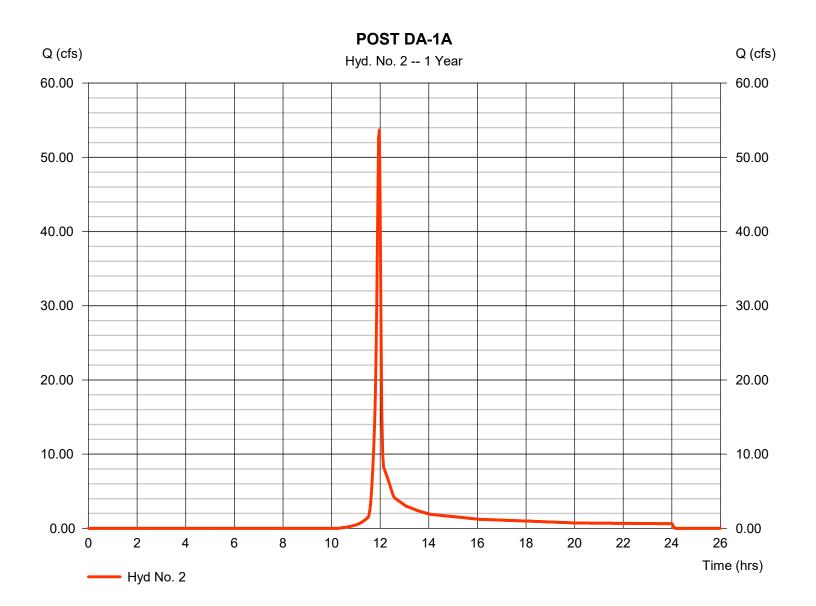
Hydrograph type	= SCS Runoff	Peak discharge	= 33.31 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 124,276 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 100.0 = 2.41 = 15.00	·	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00	_	44.05
Travel Time (min)	= 11.05	+	0.00	+	0.00	=	11.05
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 864.00 = 17.80 = Unpaved =6.81	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.12	+	0.00	+	0.00	=	2.12
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.00 = 4.12 = 3.40 = 0.030 =3.55		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1301.0)	0.0		0.0		
Travel Time (min)	= 6.11	+	0.00	+	0.00	=	6.11
Total Travel Time, Tc							19.30 min


Hydrograph Report

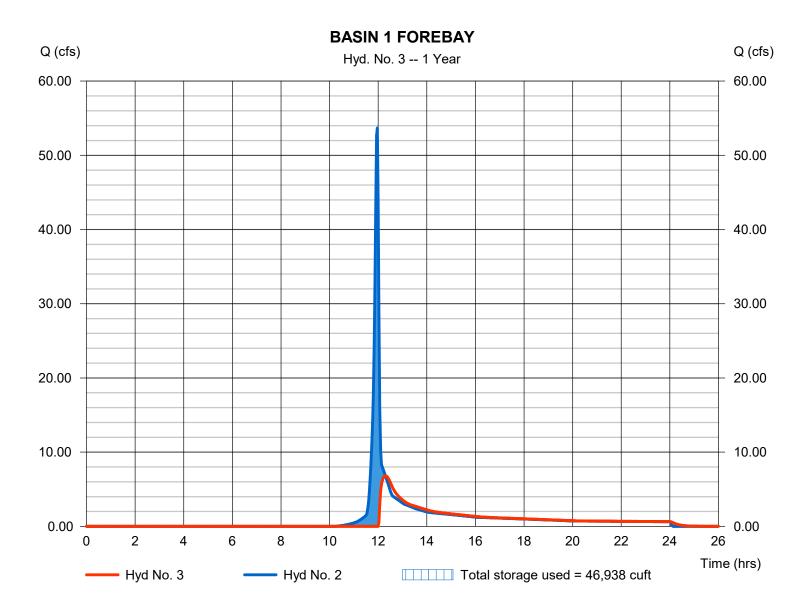
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 53.68 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 107,347 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 6.817 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 65,663 cuft
Inflow hyd. No.	= 2 - POST DA-1A	Max. Elevation	= 1116.76 ft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 46,938 cuft

Storage Indication method used.

7

Pond Report

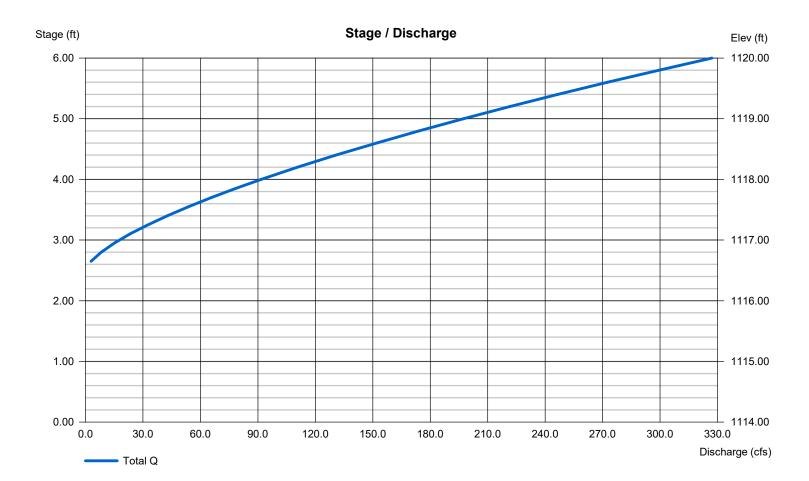
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 1 - BASIN 1 FOREBAY

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1114.00 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1114.00	14,648	0	0
1.00	1115.00	16,236	15,434	15,434
2.00	1116.00	17,929	17,074	32,507
2.50	1116.50	18,777	9,175	41,682
4.00	1118.00	21,593	30,250	71,932
6.00	1120.00	25,593	47,125	119,057

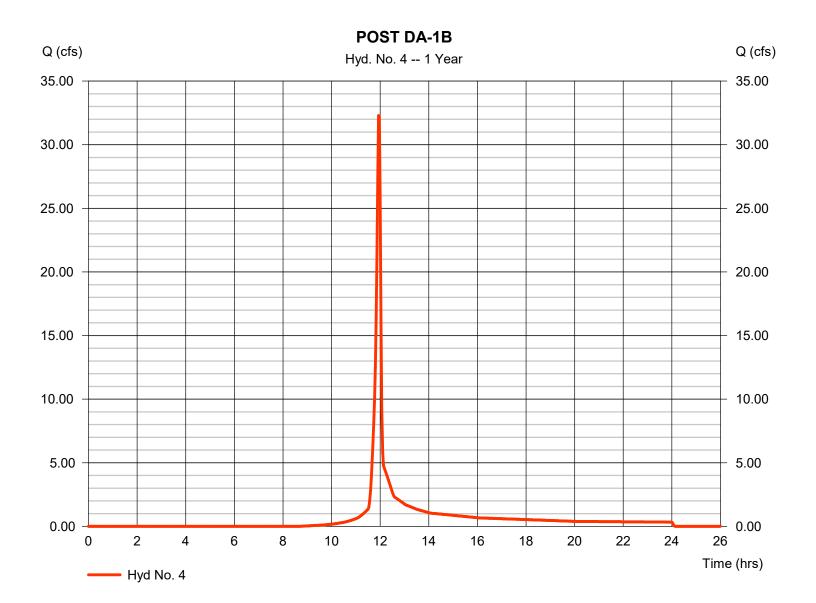
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	Inactive	0.00	0.00	0.00	Crest Len (ft)	= 15.00	Inactive	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 1116.50	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect	Rect		
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

8

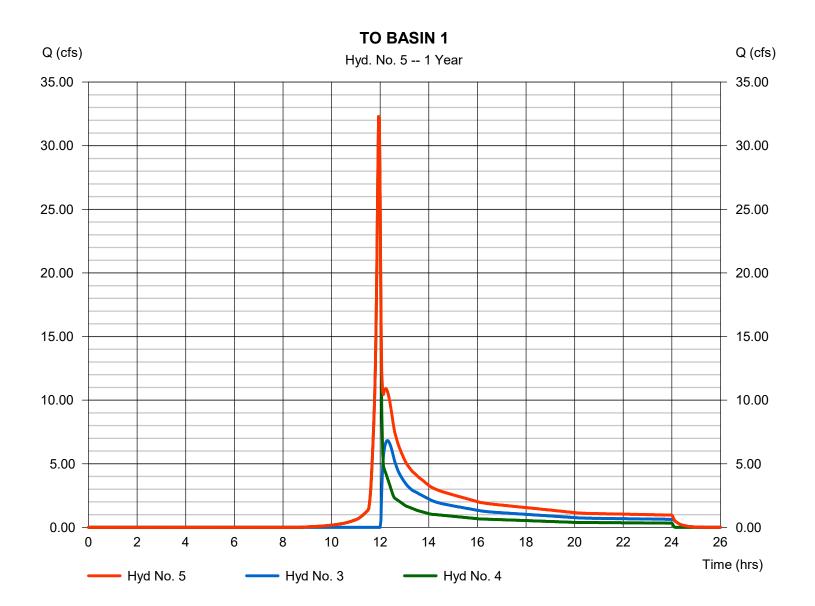

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

POST DA-1B

Hydrograph type	= SCS Runoff	Peak discharge	= 32.29 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 65,192 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

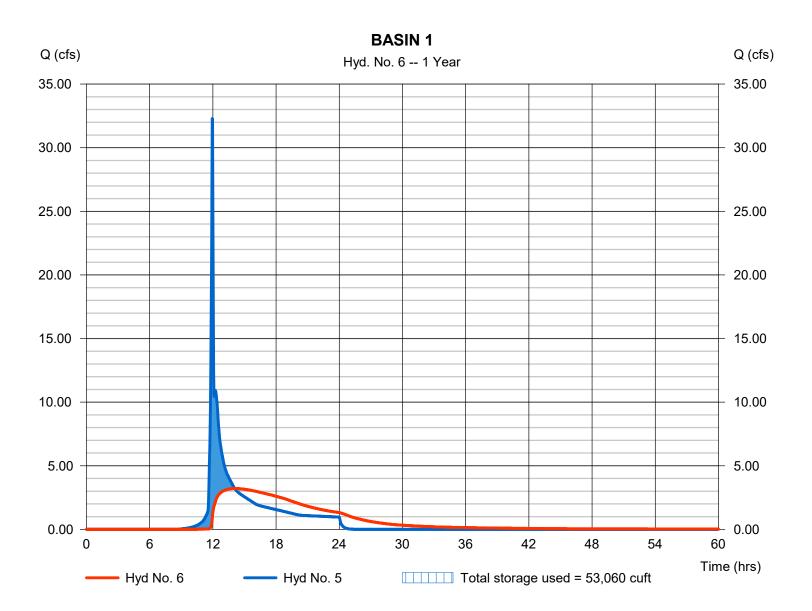


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

Hydrograph type	= Combine	Peak discharge	= 32.29 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 130,855 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.520 ac
	•, ·	••••••••••••••••	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

Peak discharge	= 3.206 cfs
Time to peak	= 14.07 hrs
Hyd. volume	= 130,190 cuft
1 Max. Elevation	= 1114.22 ft
Max. Storage	= 53,060 cuft
	Time to peak Hyd. volume Max. Elevation

Storage Indication method used.

11

Pond Report

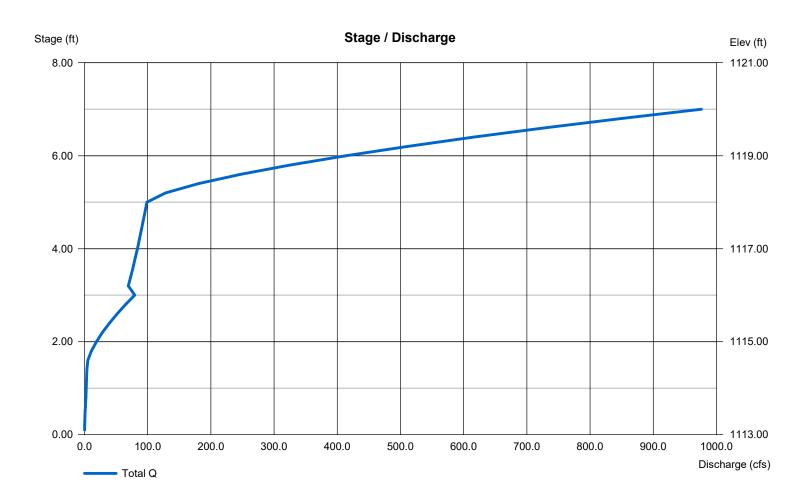
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 2 - BASIN 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1113.00 ft

Stage / Storage Table

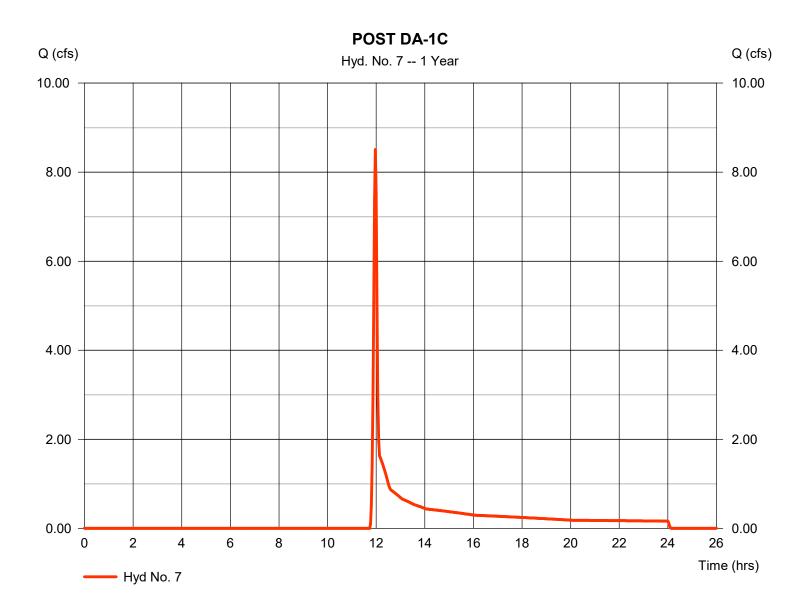

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	1113.00	41,195	0	0	
1.00	1114.00	44,172	42,671	42,671	
3.00	1116.00	50,293	94,389	137,060	
5.00	1118.00	56,640	106,859	243,919	
7.00	1120.00	63,214	119,782	363,701	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	12.00	0.00	0.00	Crest Len (ft)	= 12.00	116.00	Inactive	0.00
Span (in)	= 48.00	12.00	0.00	0.00	Crest El. (ft)	= 1114.50	1118.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 1106.18	1113.00	0.00	0.00	Weir Type	= 1	Broad	Rect	
Length (ft)	= 79.70	0.00	0.00	0.00	Multi-Stage	= Yes	No	Yes	No
Slope (%)	= 1.10	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by 0	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

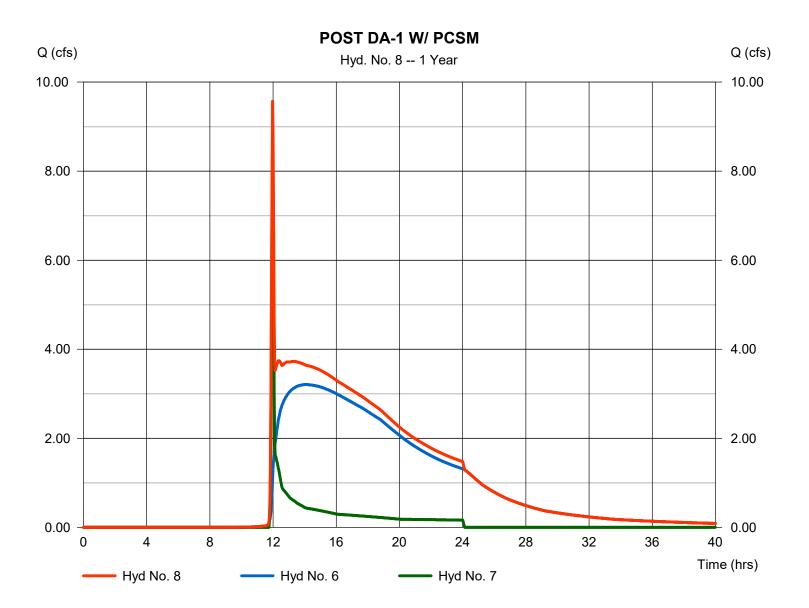


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

POST DA-1C

Hydrograph type	= SCS Runoff	Peak discharge	= 8.506 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 19,253 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

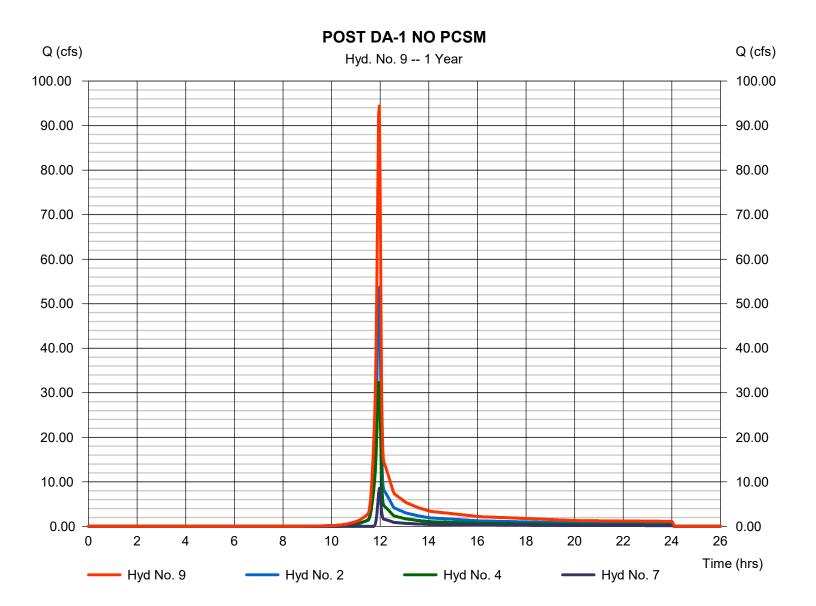

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 9.572 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 149,443 cuft
Inflow hyds.	= 6,7	Contrib. drain. area	= 17.190 ac

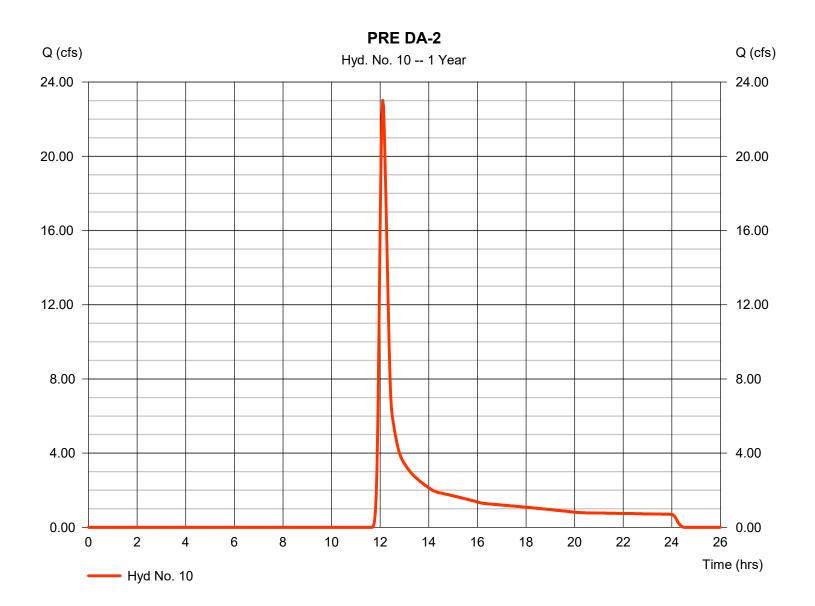


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 94.41 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 191,791 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac


15

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

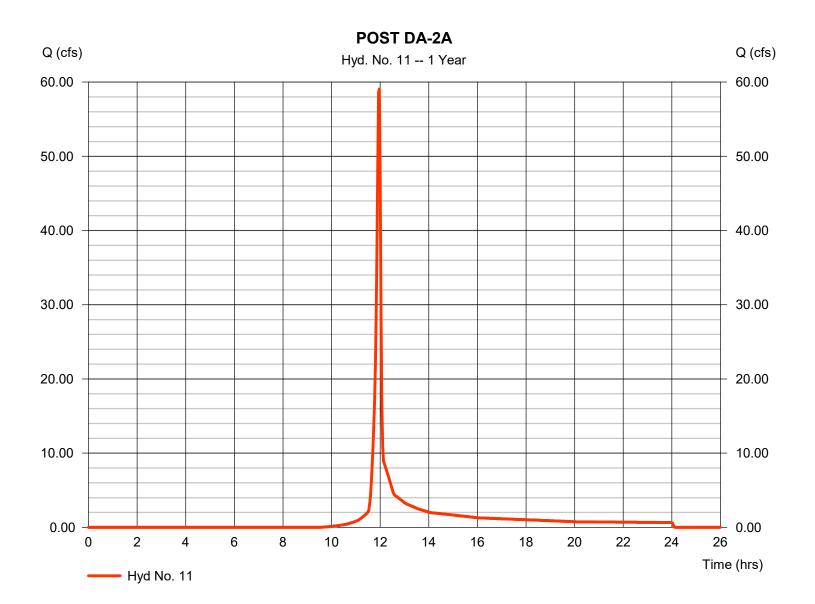
PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 23.01 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 89,190 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

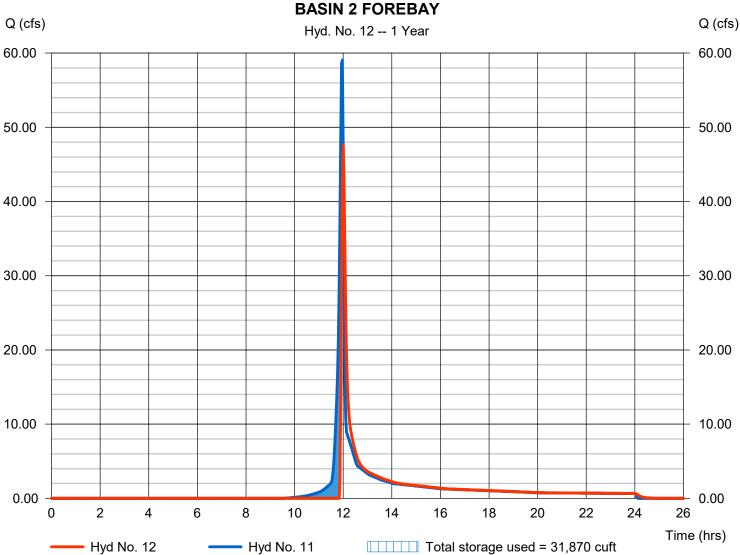

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 42.4 = 2.41 = 7.00		0.240 57.6 2.41 14.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.55	+	4.86	+	0.00	=	12.40
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 421.00 = 15.90 = Unpaveo =6.43	ł	388.00 18.00 Unpave 6.85	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.09	+	0.94	+	0.00	=	2.04
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.00 = 4.10 = 7.20 = 0.030 =5.18		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1103.0		0.0		0.0		
Travel Time (min)	= 3.55	+	0.00	+	0.00	=	3.55
Total Travel Time, Tc						18.00 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 59.07 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 118,517 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 47.66 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 100,187 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1121.12 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 31,870 cuft

Storage Indication method used.

BASIN 2 FOREBAY

Pond Report

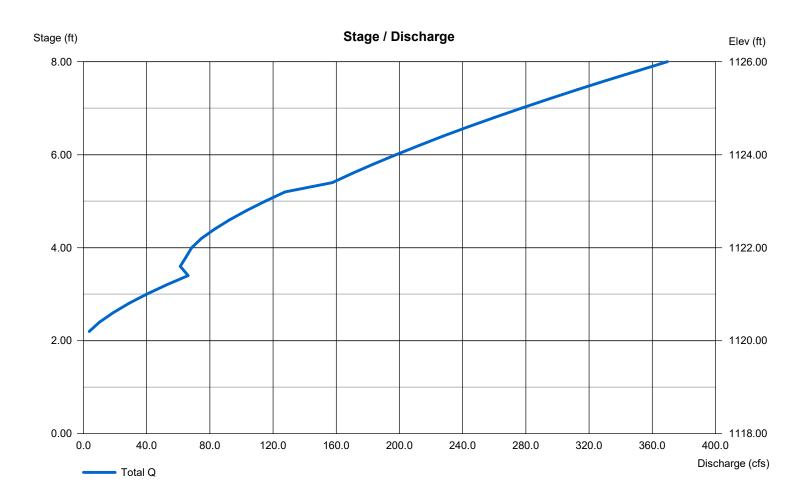
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 3 - BASIN 2 FOREBAY

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1118.00 ft

Stage / Storage Table

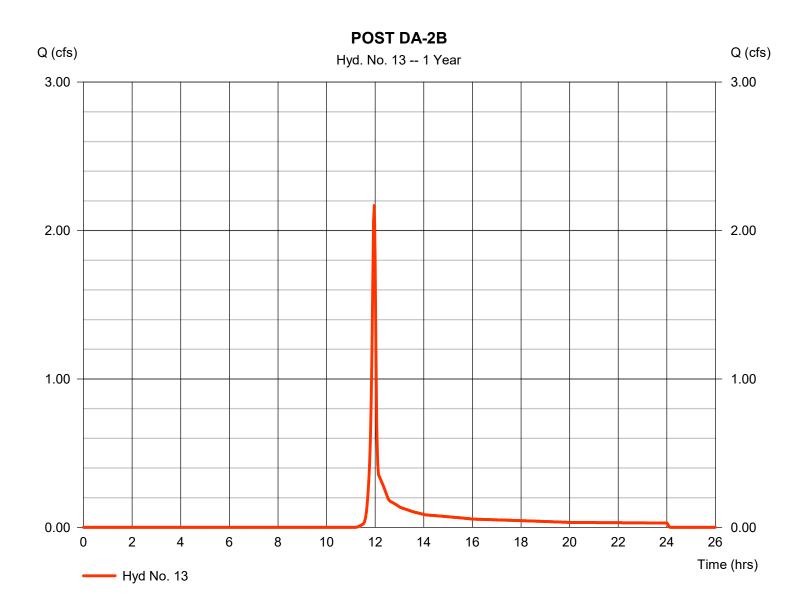

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1118.00	7,830	0	0
2.00	1120.00	10,570	18,330	18,330
4.00	1122.00	13,621	24,124	42,454
6.00	1124.00	16,944	30,502	72,956
8.00	1126.00	20,494	37,378	110,334

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	0.00	0.00	0.00	Crest Len (ft)	= 12.00	12.00	0.00	0.00
Span (in)	= 36.00	0.00	0.00	0.00	Crest El. (ft)	= 1120.00	1122.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 1112.00	0.00	0.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 106.70	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.90	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

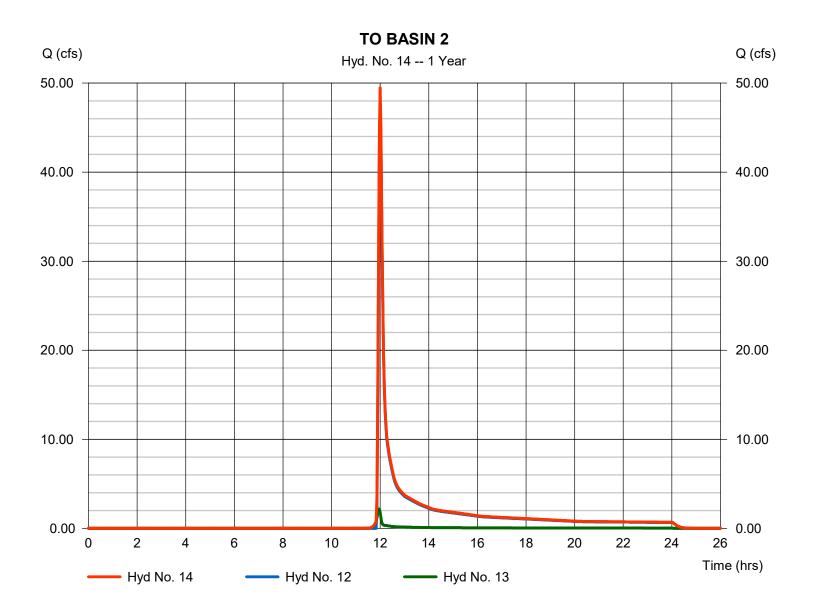

20

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 2.169 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 4,381 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

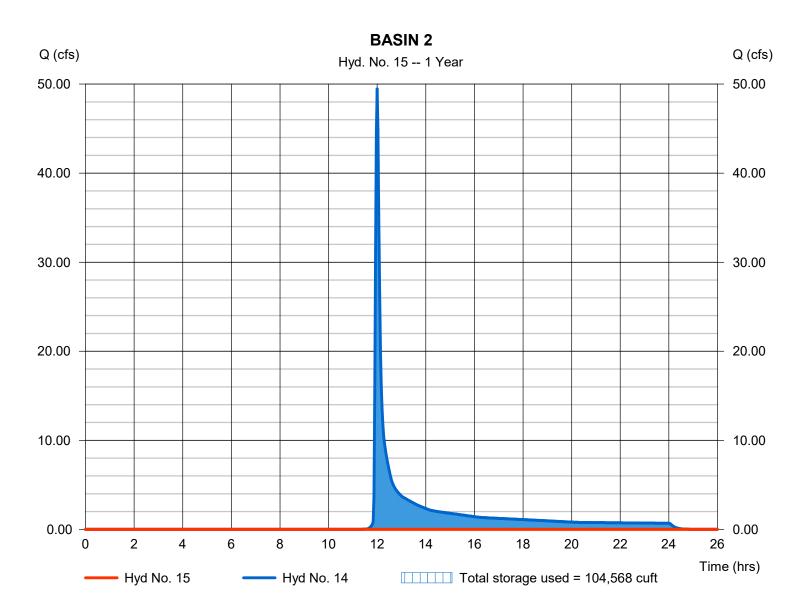

21

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

Hydrograph type	= Combine	Peak discharge	= 49.47 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 104,568 cuft
Inflow hyds.	= 12, 13	Contrib. drain. area	= 2.240 ac
,	,		


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

BASIN 2

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 14 - TO BASIN 2	Max. Elevation	= 1113.57 ft
Reservoir name	= BASIN 2	Max. Storage	= 104,568 cuft

Storage Indication method used.

23

Pond Report

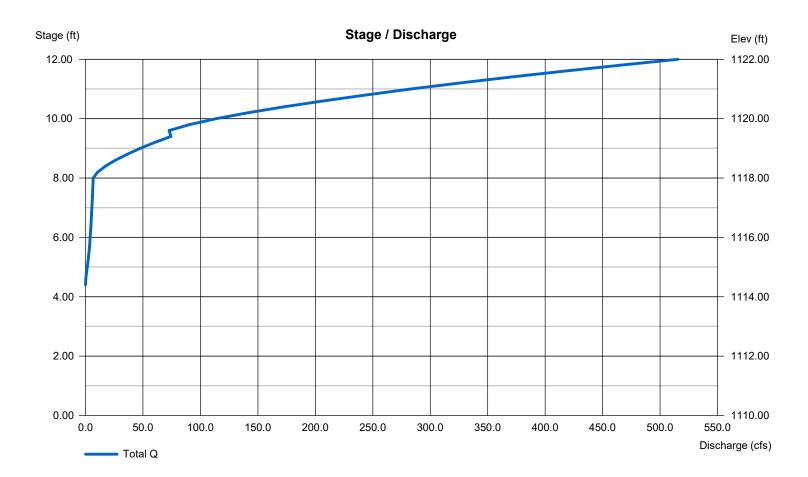
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 4 - BASIN 2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1110.00 ft

Stage / Storage Table

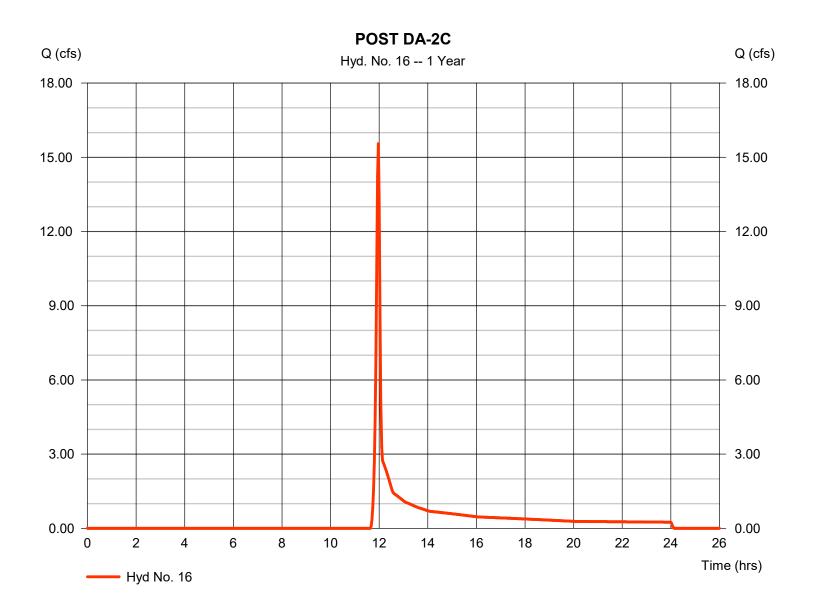

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1110.00	25,324	0	0
2.00	1112.00	29,507	54,772	54,772
4.00	1114.00	33,993	63,441	118,213
6.00	1116.00	38,715	72,650	190,863
8.00	1118.00	43,663	82,320	273,183
10.00	1120.00	48,837	92,443	365,625
12.00	1122.00	54,237	103,017	468,642

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	12.00	Inactive	0.00	Crest Len (ft)	= 12.00	40.00	Inactive	0.00
Span (in)	= 36.00	12.00	0.00	0.00	Crest El. (ft)	= 1118.00	1119.50	1114.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 1106.82	1114.37	0.00	0.00	Weir Type	= 1	Broad	Rect	
Length (ft)	= 183.30	0.00	0.00	0.00	Multi-Stage	= Yes	No	Yes	No
Slope (%)	= 12.70	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by (Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

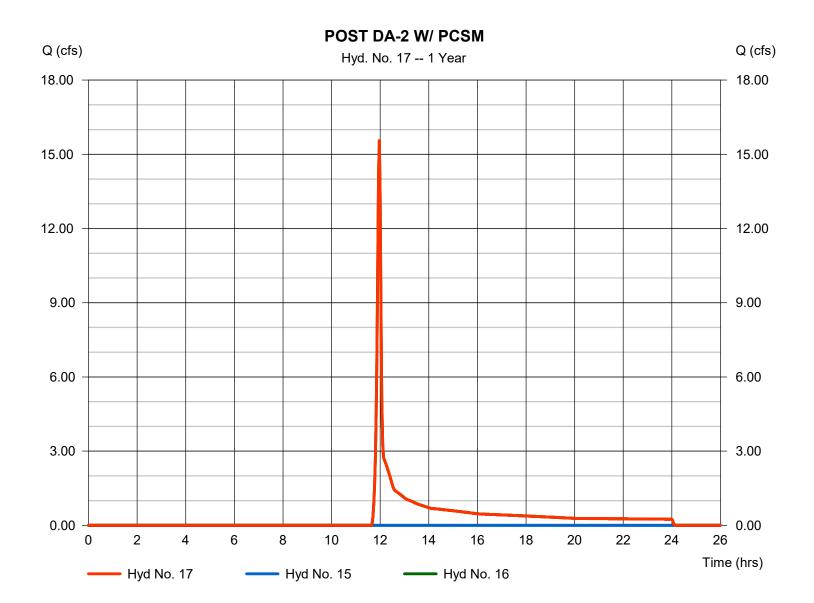

24

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 15.55 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 32,767 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

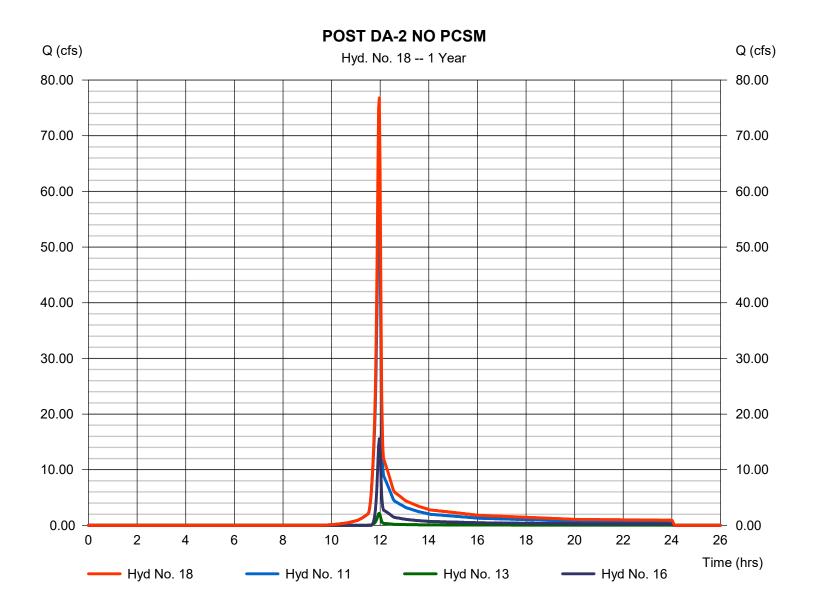

25

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 15.55 cfs = 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 32,767 cuft = 22,710 ac
Inflow hyds.	= 15, 16	Contrib. drain. area	- 22.710 ac

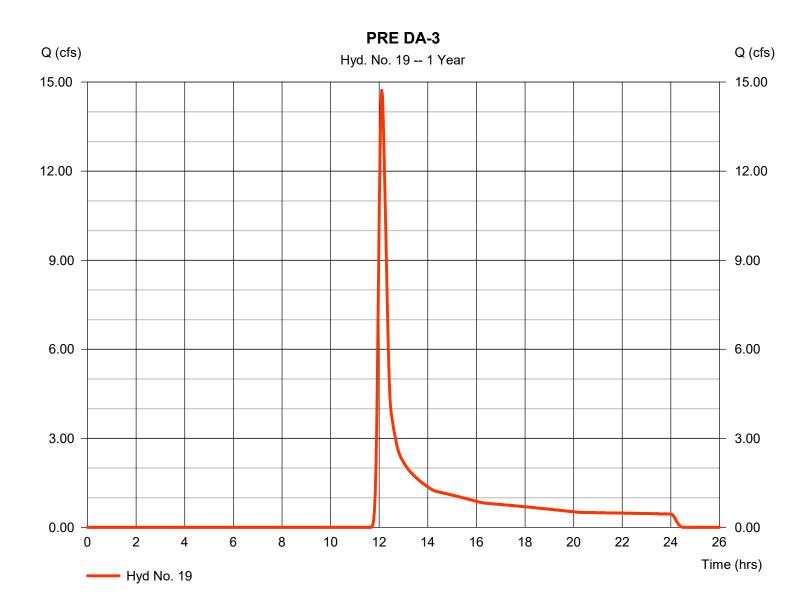


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 76.79 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 155,665 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

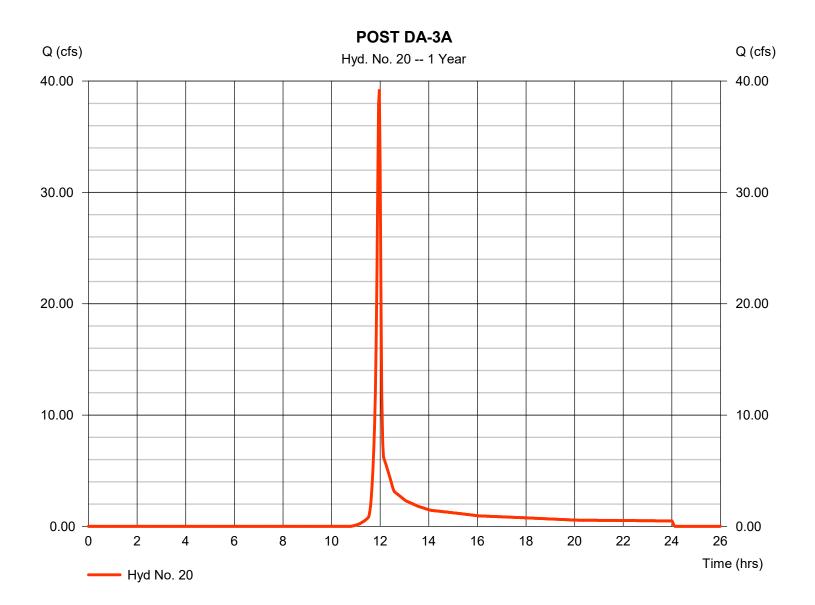
PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 14.72 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 57,063 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

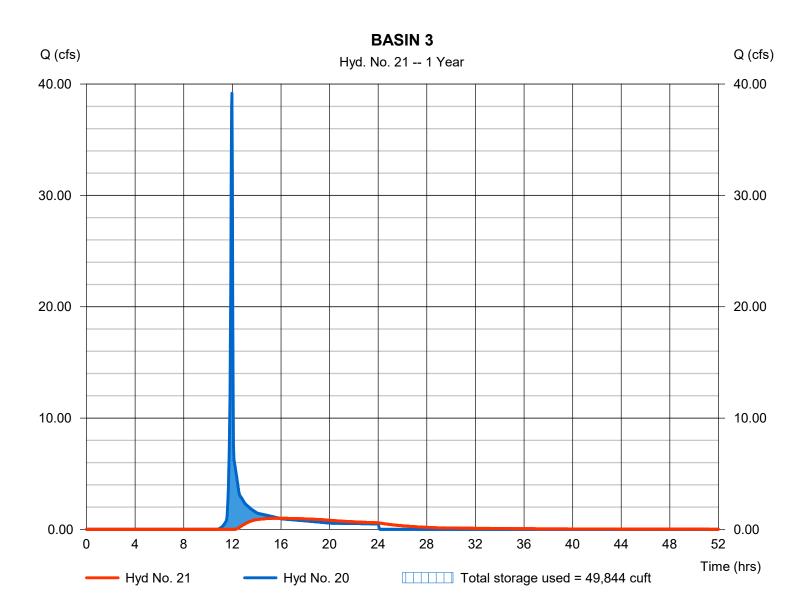

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 100.0 = 2.41 = 16.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 10.77	+	0.00	+	0.00	=	10.77
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 629.00 = 19.10 = Unpaved =7.05	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.49	+	0.00	+	0.00	=	1.49
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.00 = 4.10 = 4.70 = 0.030 =4.18		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1731.0		0.0		0.0		
Travel Time (min)	= 6.90	+	0.00	+	0.00	=	6.90
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 39.17 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 78,481 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

BASIN 3

Hydrograph type	= Reservoir	Peak discharge	= 0.999 cfs
Storm frequency	= 1 yrs	Time to peak	= 15.83 hrs
Time interval	= 2 min	Hyd. volume	= 42,887 cuft
Inflow hyd. No.	= 20 - POST DA-3A	Max. Elevation	= 1106.69 ft
Reservoir name	= BASIN 3	Max. Storage	= 49,844 cuft

Storage Indication method used.

31

Pond Report

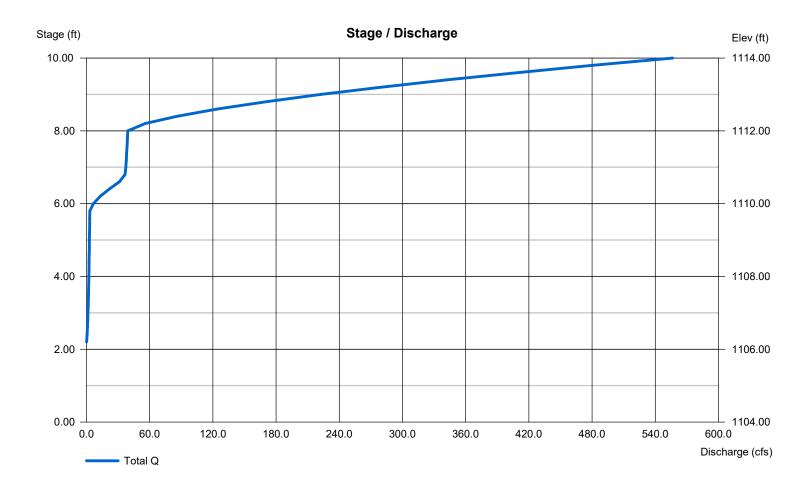
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 5 - BASIN 3

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1104.00 ft

Stage / Storage Table

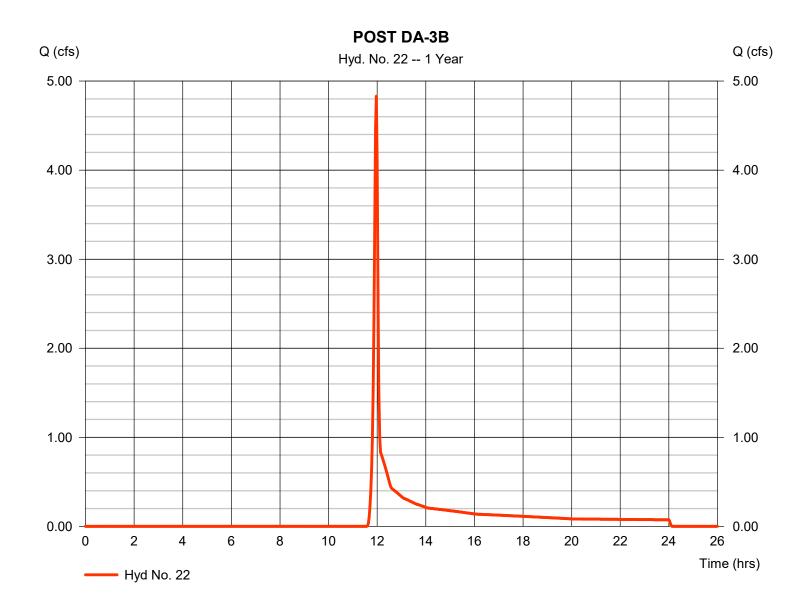

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1104.00	16,343	0	0
2.00	1106.00	19,264	35,563	35,563
4.00	1108.00	22,065	41,293	76,857
6.00	1110.00	24,864	46,896	123,753
8.00	1112.00	27,661	52,495	176,248
10.00	1114.00	30,578	58,209	234,457

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 20.00	Inactive	8.00	0.00	Crest Len (ft)	= 12.00	70.00	0.00	0.00
Span (in)	= 20.00	8.00	8.00	0.00	Crest El. (ft)	= 1109.81	1112.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 1097.23	1104.47	1106.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 81.90	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.60	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by 0	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

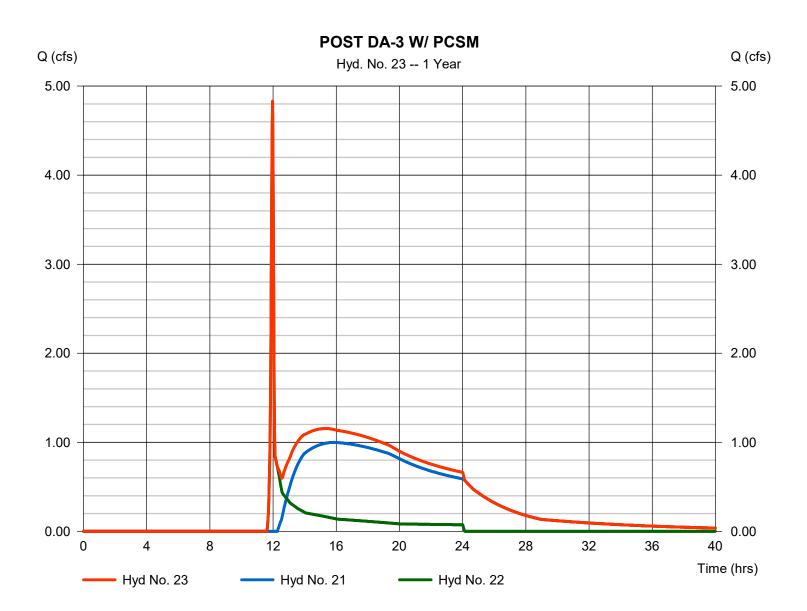


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 4.830 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 10,027 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

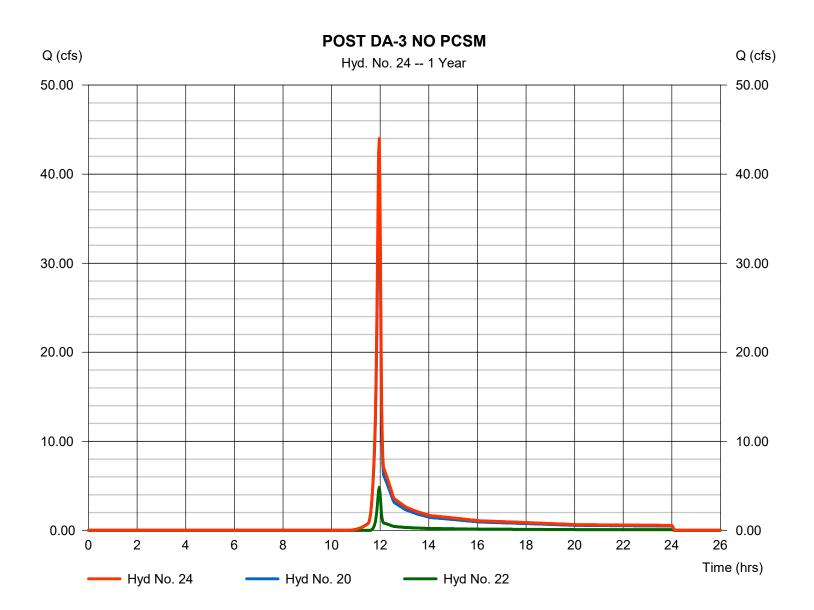


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 4.830 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 52,914 cuft
Inflow hyds.	= 21.22	Contrib. drain. area	= 6.420 ac
innen nyaér			01120 40



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

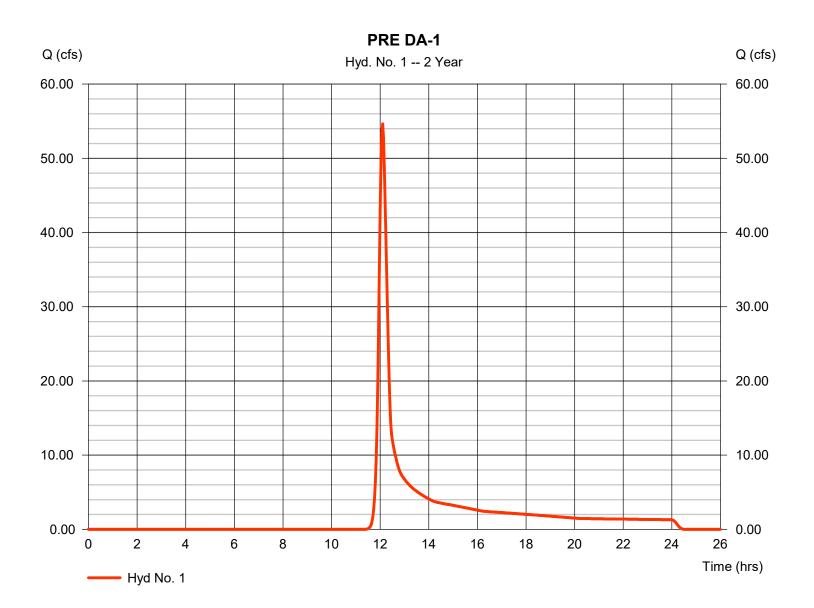
Hyd. No. 24

POST DA-3 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 44.00 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 88,508 cuft
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260 ac
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260

35

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

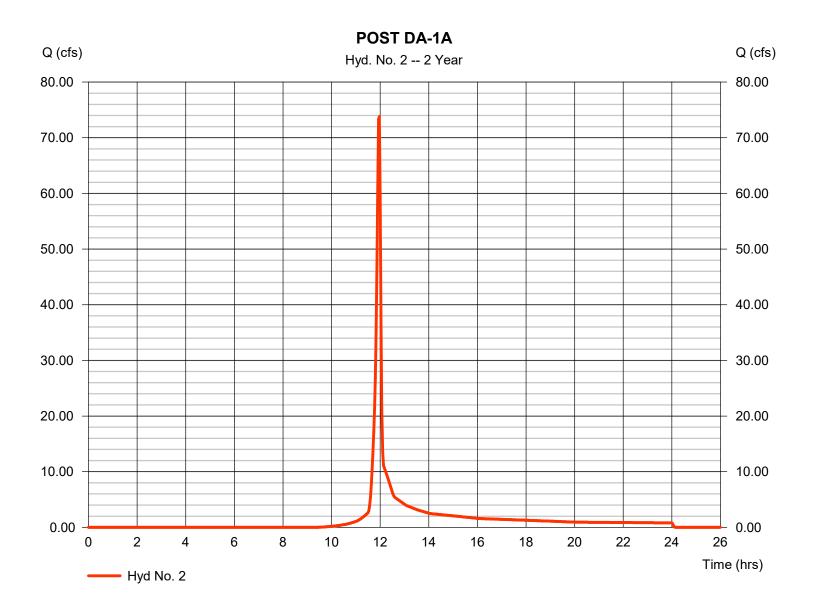

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	54.64	2	726	187,808				PRE DA-1
2	SCS Runoff	73.81	2	718	148,199				POST DA-1A
3	Reservoir	32.51	2	722	106,516	2	1117.27	56,826	BASIN 1 FOREBAY
4	SCS Runoff	42.80	2	716	86,676				POST DA-1B
5	Combine	58.92	2	720	193,192	3, 4			TO BASIN 1
6	Reservoir	8.667	2	764	192,503	5	1114.72	76,731	BASIN 1
7	SCS Runoff	14.51	2	718	30,398				POST DA-1C
8	Combine	16.44	2	718	222,901	6, 7			POST DA-1 W/ PCSM
9	Combine	130.68	2	718	265,273	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	38.99	2	726	136,647				PRE DA-2
11	SCS Runoff	79.50	2	716	160,512				POST DA-2A
12	Reservoir	66.15	2	722	142,181	11	1121.53	36,515	BASIN 2 FOREBAY
13	SCS Runoff	3.151	2	718	6,306				POST DA-2B
14	Combine	68.14	2	718	148,487	12, 13			TO BASIN 2
15	Reservoir	0.508	2	1450	16,258	14	1114.71	144,011	BASIN 2
16	SCS Runoff	24.37	2	718	49,518				POST DA-2C
17	Combine	24.37	2	718	65,776	15, 16			POST DA-2 W/ PCSM
18	Combine	106.87	2	718	216,335	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	24.94	2	726	87,425				PRE DA-3
20	SCS Runoff	55.27	2	718	110,558				POST DA-3A
21	Reservoir	1.726	2	880	74,964	20	1107.39	64,249	BASIN 3
22	SCS Runoff	7.404	2	718	14,956				POST DA-3B
23	Combine	7.404	2	718	89,920	21, 22			POST DA-3 W/ PCSM
24	Combine	62.67	2	718	125,514	20, 22,			POST DA-3 NO PCSM
Meadows Landing - 2021-7-28.gpw			Return F	Period: 2 Ye	 ear	Friday, 07	/ 30 / 2021		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 54.64 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 187,808 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

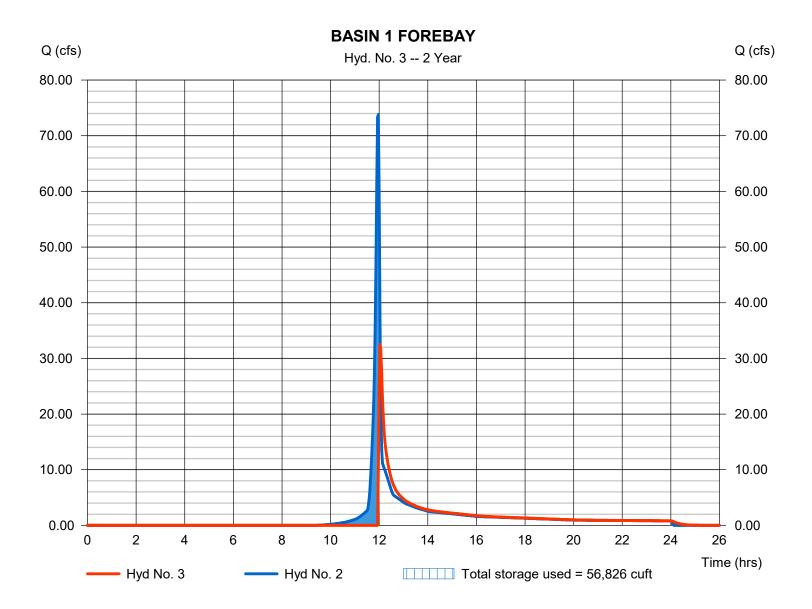


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 73.81 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 148,199 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

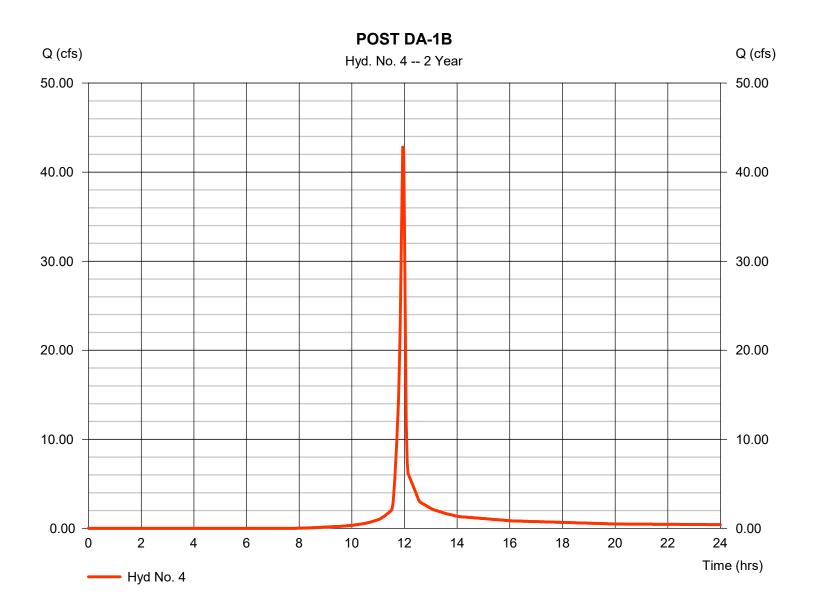

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 32.51 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 106,516 cuft
Inflow hyd. No.	= 2 - POST DA-1A	Max. Elevation	= 1117.27 ft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 56,826 cuft

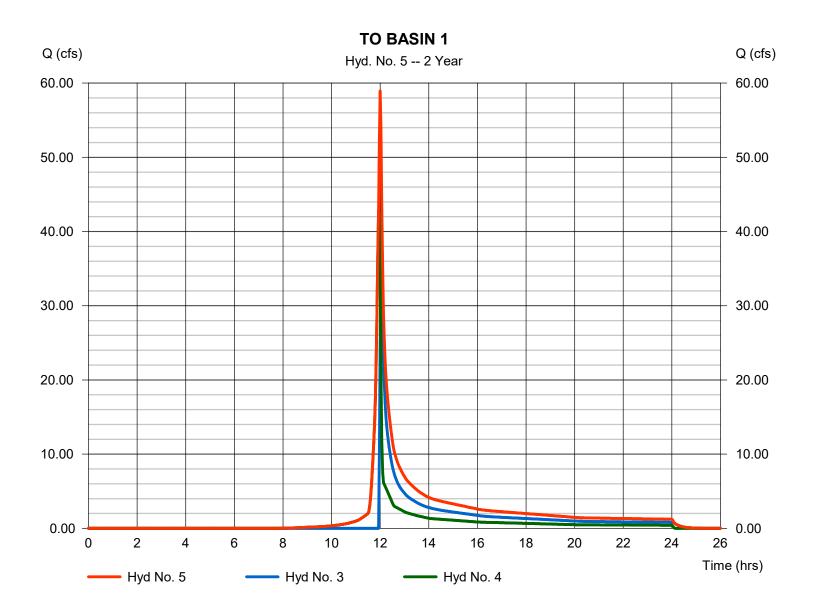
Storage Indication method used.


39

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

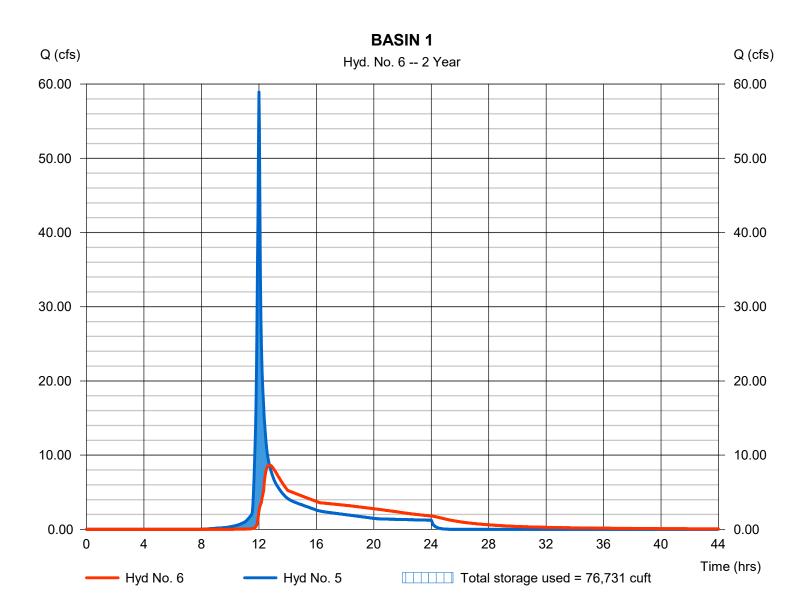
POST DA-1B


Hydrograph type	= SCS Runoff	Peak discharge	= 42.80 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 86,676 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Drainage area Basin Slope Tc method Total precip.	= 19.520 ac = 0.0 % = User = 2.41 in	Curve number Hydraulic length Time of conc. (Tc) Distribution	= 88 = 0 ft = 5.00 min = Type II

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

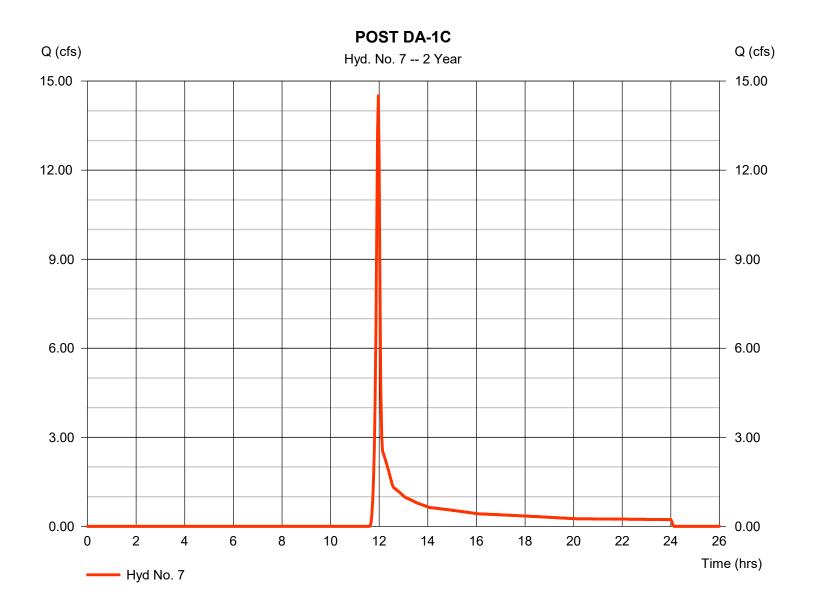

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

eservoir Pea	ık discharge =	8.667 cfs
/rs Tim	e to peak =	12.73 hrs
min Hyd	l. volume =	192,503 cuft
TO BASIN 1 Max	c. Elevation =	1114.72 ft
ASIN 1 Max	<. Storage =	76,731 cuft
/ -	rrs Tim nin Hyd TO BASIN 1 Max	rrs Time to peak = nin Hyd. volume = TO BASIN 1 Max. Elevation =

Storage Indication method used.

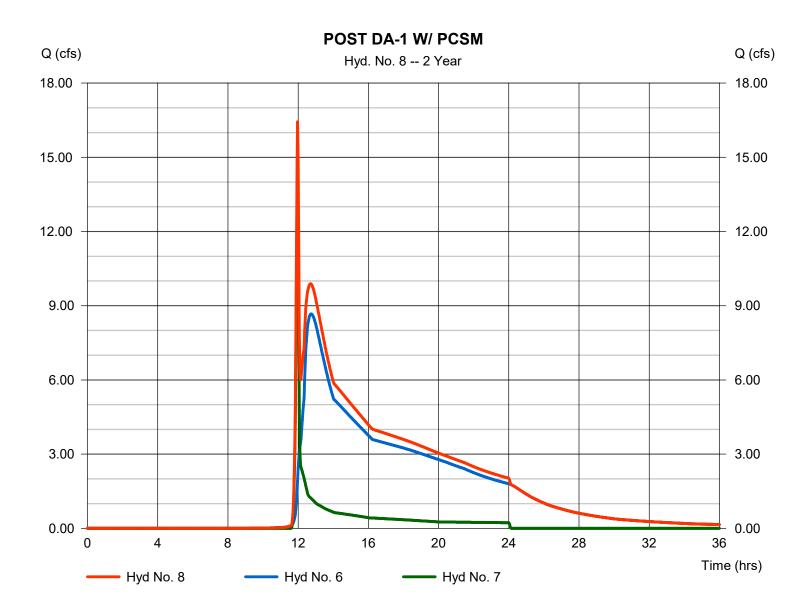

42

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

POST DA-1C

Hydrograph type	= SCS Runoff	Peak discharge	= 14.51 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 30,398 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

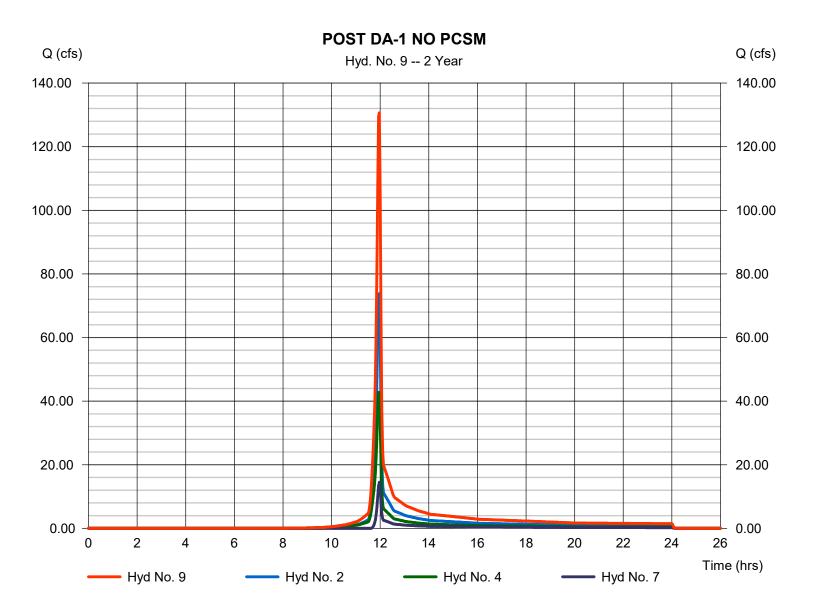

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 16.44 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 222,901 cuft
Inflow hyds.	= 6,7	Contrib. drain. area	= 17.190 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 130.68 cfs
Storm frequency Time interval	= 2 yrs = 2 min	Time to peak Hyd. volume	= 11.97 hrs = 265,273 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac

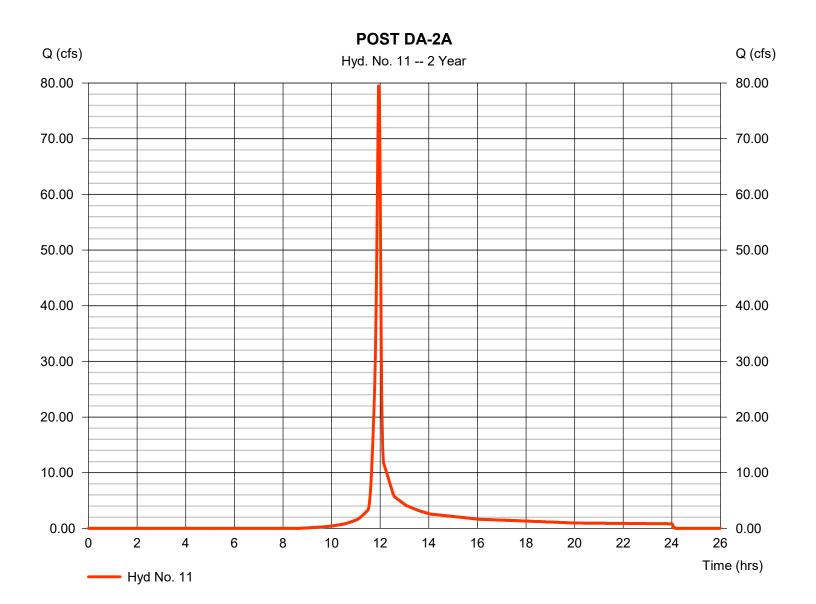
45

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 38.99 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 136,647 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

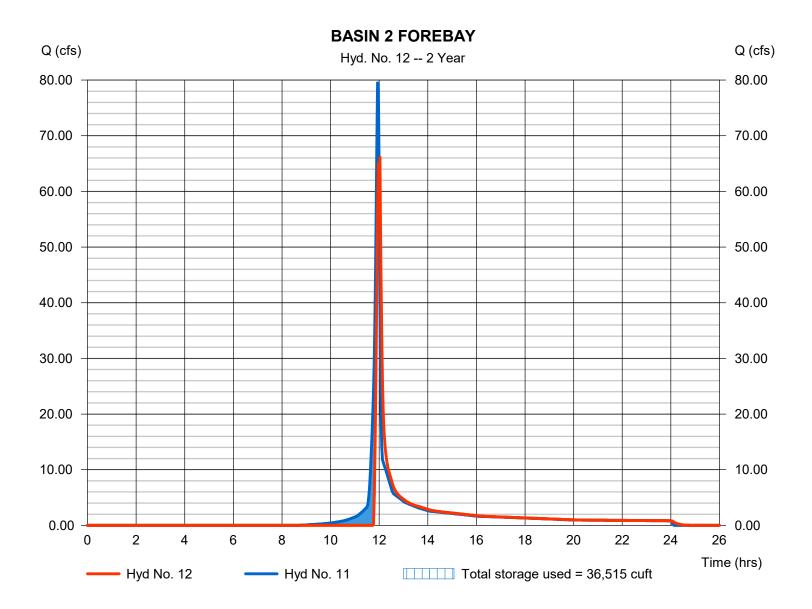

46

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 79.50 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 160,512 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

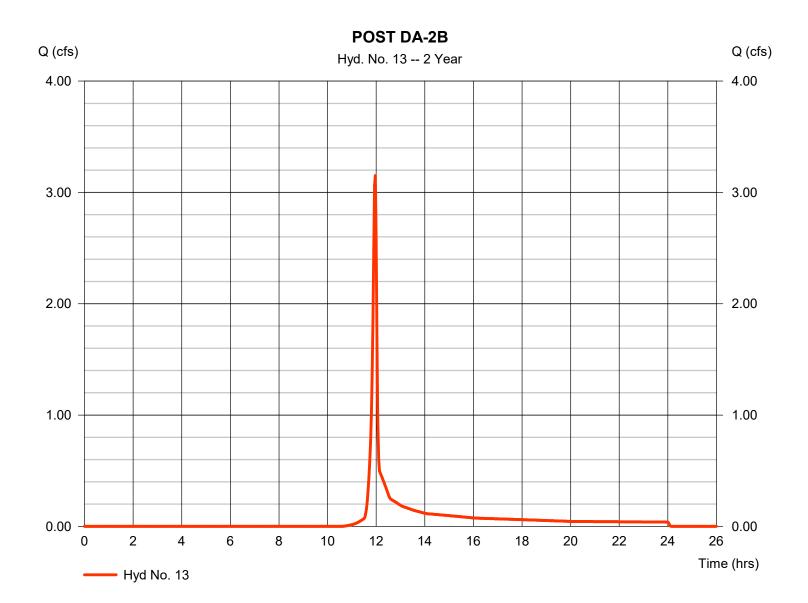

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 66.15 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 142,181 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1121.53 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 36,515 cuft

Storage Indication method used.


48

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 3.151 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 6,306 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

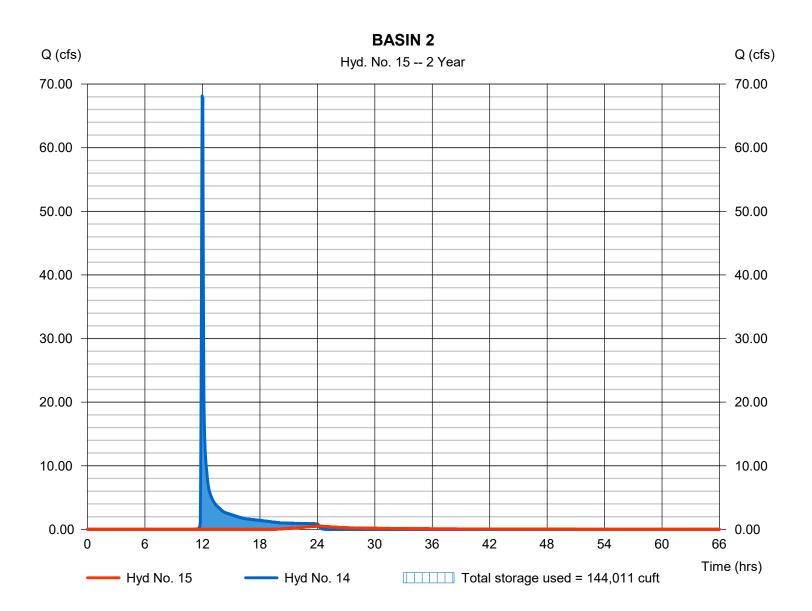


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

Storm frequency =	= Combine	Peak discharge	= 68.14 cfs
	= 2 yrs	Time to peak	= 11.97 hrs
	= 2 min	Hyd. volume	= 148,487 cuft
	= 12, 13	Contrib. drain. area	= 2.240 ac
innow nyus:	- 12, 10		= 2.240 ac

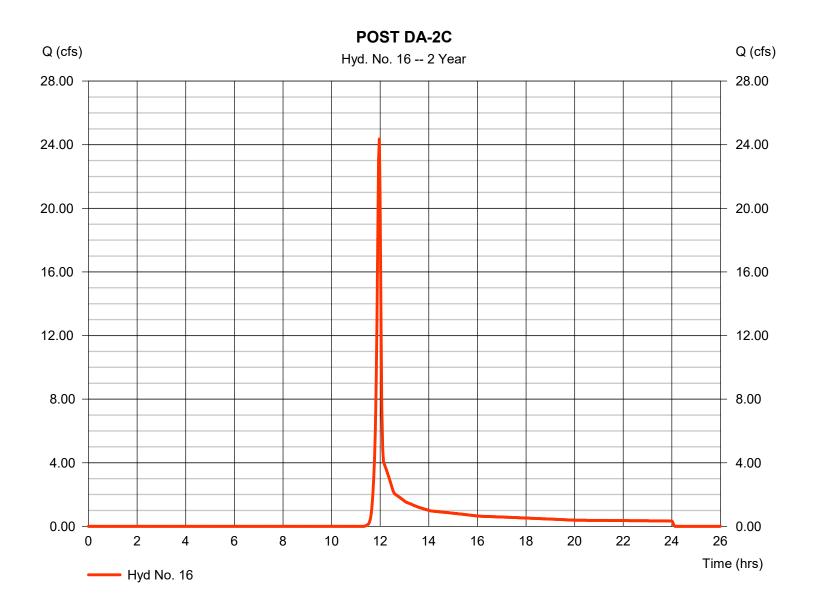


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

Hydrograph type	= Reservoir	Peak discharge	= 0.508 cfs
Storm frequency	= 2 yrs	Time to peak	= 24.17 hrs
Time interval	= 2 min	Hyd. volume	= 16,258 cuft
Inflow hyd. No.	= 14 - TO BASIN 2	Max. Elevation	= 1114.71 ft
Reservoir name	= BASIN 2	Max. Storage	= 144,011 cuft

Storage Indication method used.

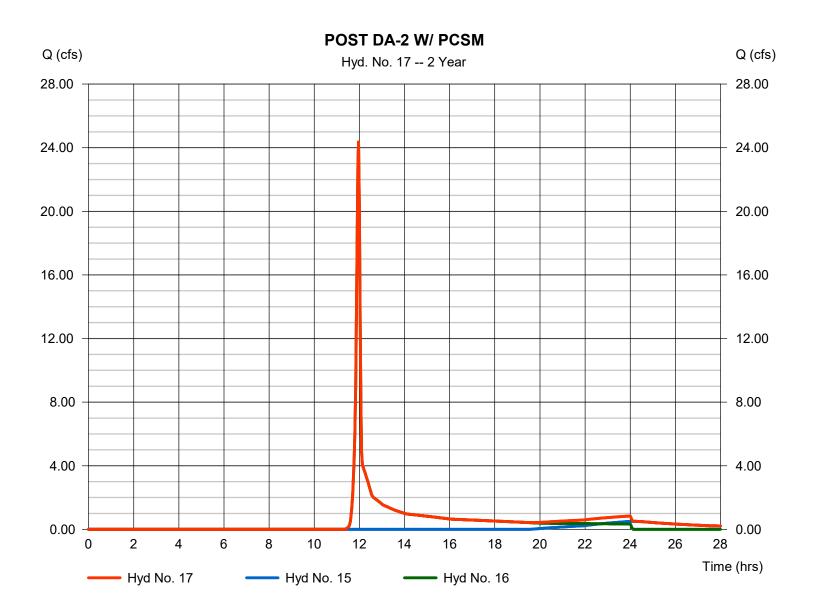

51

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 24.37 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 49,518 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Storm duration	= 24 hrs	Shape factor	= 484

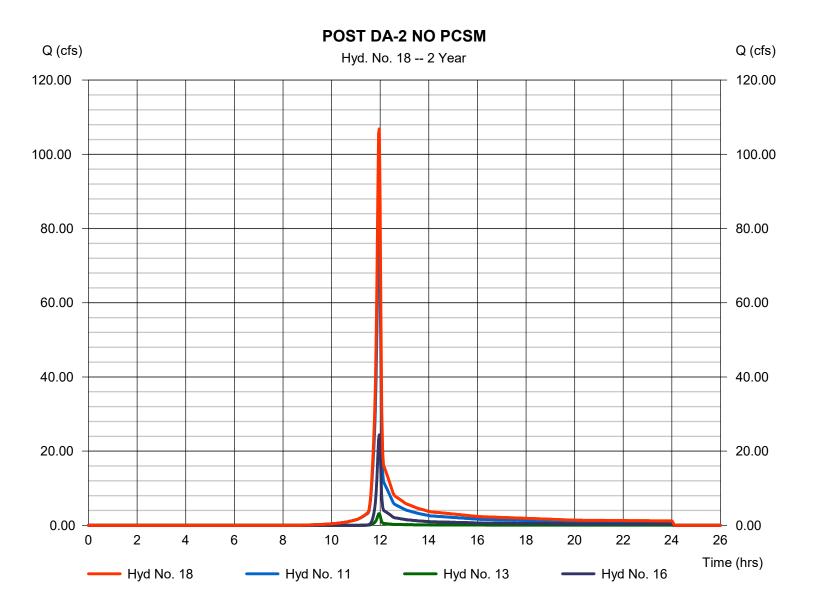


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 24.37 cfs = 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 65,776 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 22.710 ac

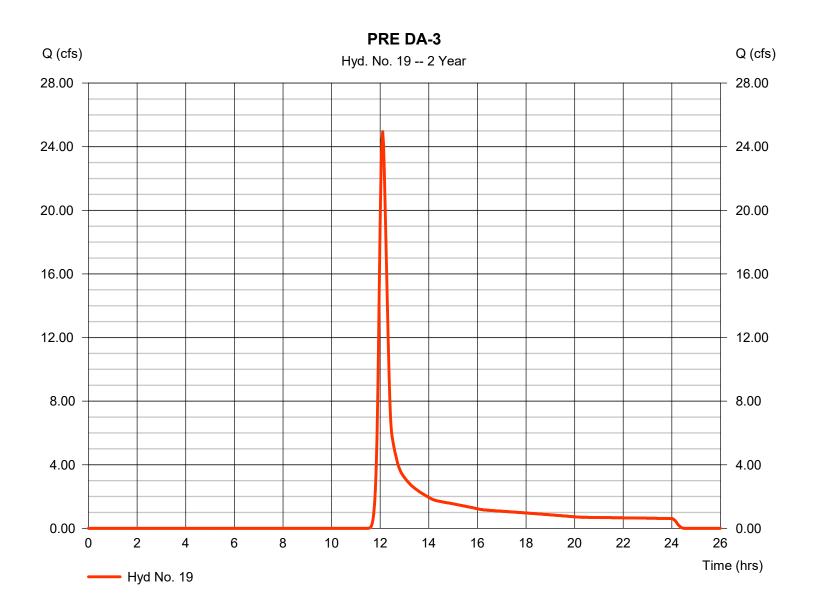

53

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 106.87 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 216,335 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac

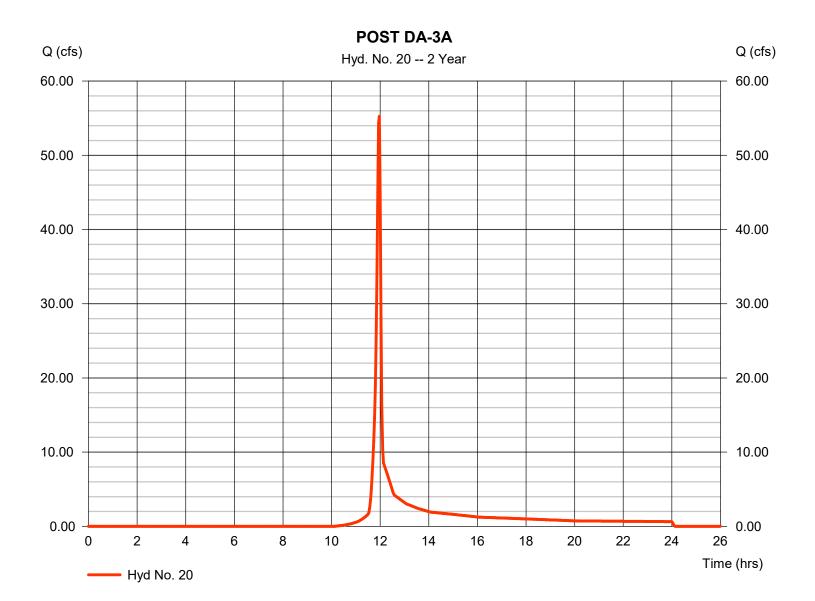


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 24.94 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 87,425 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

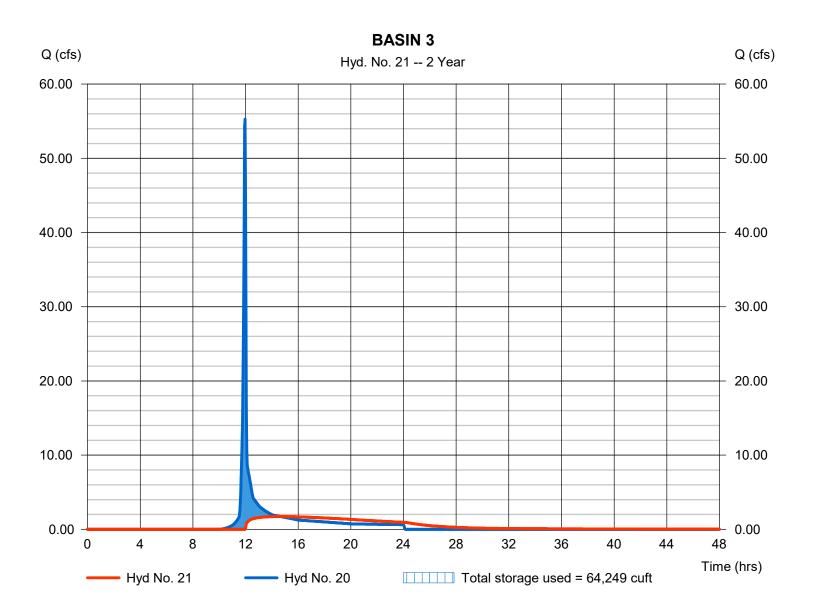


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 55.27 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 110,558 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

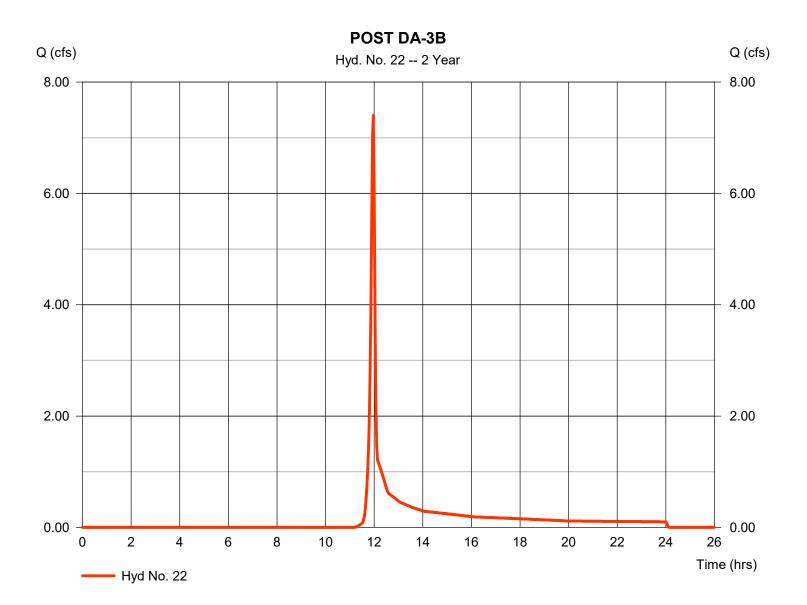


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

Hydrograph type	= Reservoir	Peak discharge	= 1.726 cfs
Storm frequency	= 2 yrs	Time to peak	= 14.67 hrs
Time interval	= 2 min	Hyd. volume	= 74,964 cuft
Inflow hyd. No.	= 20 - POST DA-3A	Max. Elevation	= 1107.39 ft
Reservoir name	= BASIN 3	Max. Storage	= 64,249 cuft

Storage Indication method used.

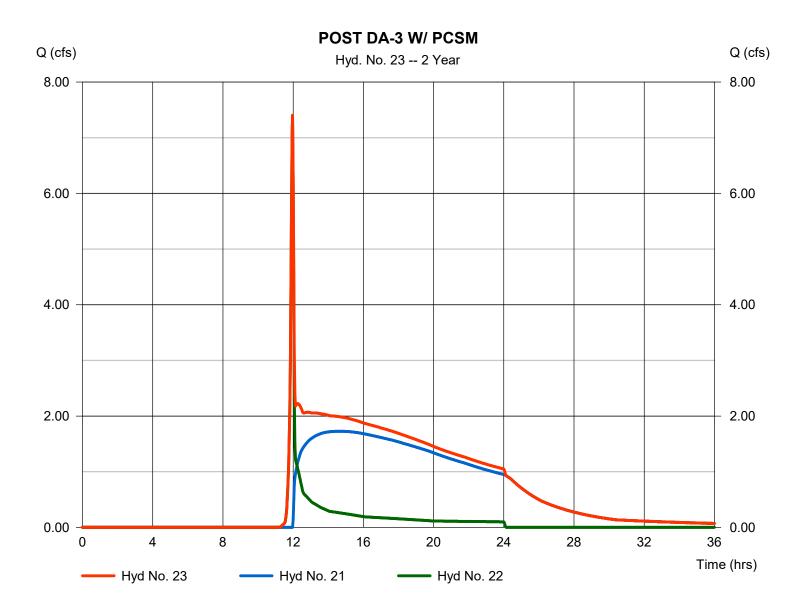


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 7.404 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 14,956 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.41 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

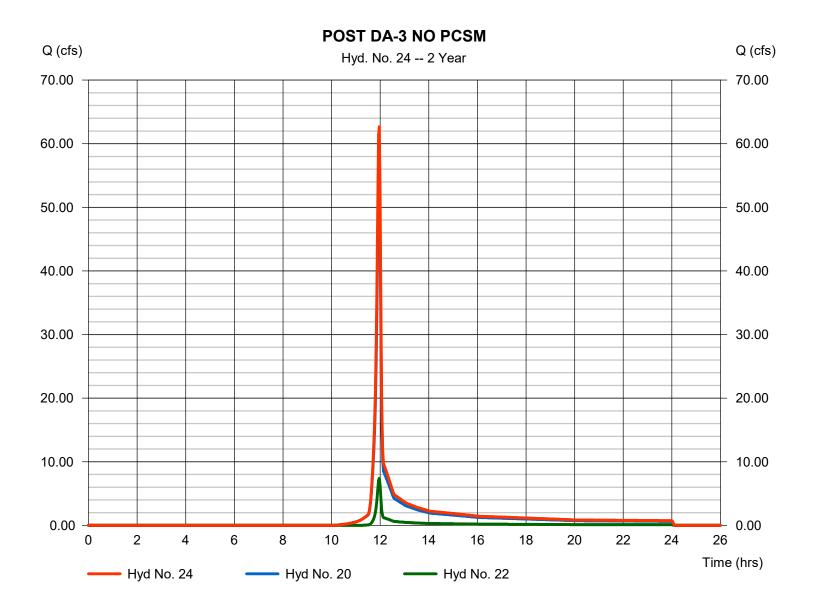


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 7.404 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 89,920 cuft
Inflow hyds.	= 21, 22	Contrib. drain. area	= 6.420 ac



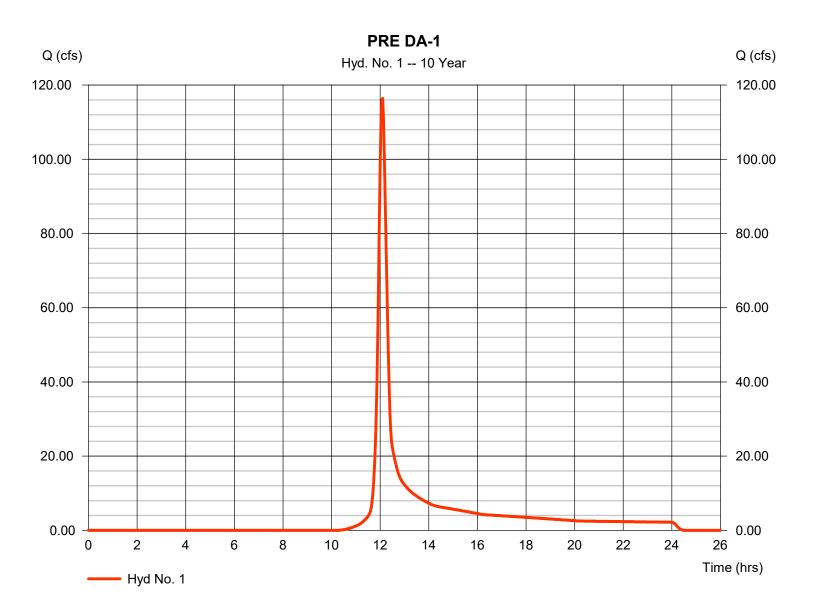
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 24

POST DA-3 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 62.67 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 125,514 cuft
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

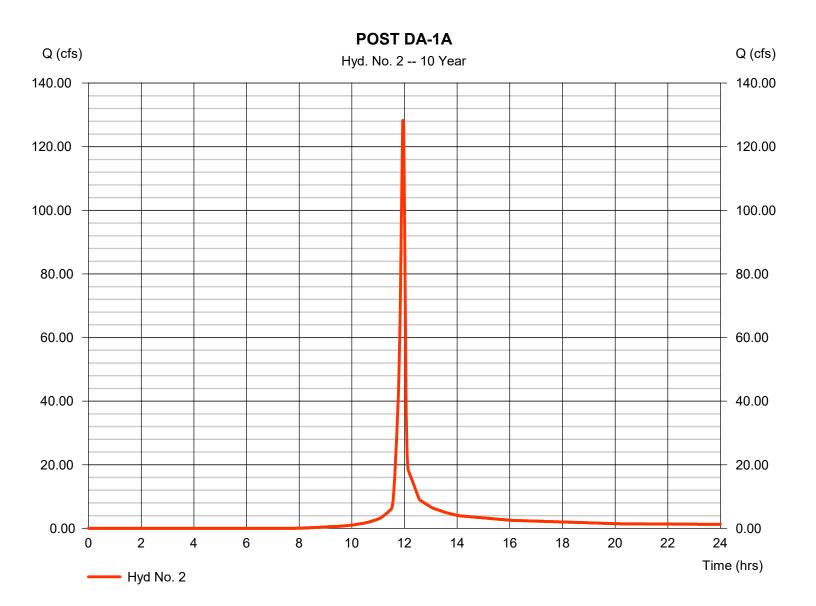

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	116.42	2	726	374,886				PRE DA-1
2	SCS Runoff	128.23	2	716	259,722				POST DA-1A
3	Reservoir	104.40	2	720	218,039	2	1118.14	75,075	BASIN 1 FOREBAY
4	SCS Runoff	69.76	2	716	143,457				POST DA-1B
5	Combine	166.44	2	718	361,496	3, 4			TO BASIN 1
6	Reservoir	59.50	2	728	360,768	5	1115.73	123,767	BASIN 1
7	SCS Runoff	32.10	2	718	64,334				POST DA-1C
8	Combine	65.20	2	726	425,101	6, 7			POST DA-1 W/ PCSM
9	Combine	229.05	2	716	467,512	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	85.79	2	726	277,913				PRE DA-2
11	SCS Runoff	134.12	2	716	273,261				POST DA-2A
12	Reservoir	102.93	2	720	254,931	11	1122.80	54,550	BASIN 2 FOREBAY
13	SCS Runoff	5.837	2	718	11,752				POST DA-2B
14	Combine	107.64	2	720	266,683	12, 13			TO BASIN 2
15	Reservoir	3.286	2	926	134,399	14	1115.63	177,298	BASIN 2
16	SCS Runoff	49.42	2	718	98,843				POST DA-2C
17	Combine	49.42	2	718	233,241	15, 16			POST DA-2 W/ PCSM
18	Combine	188.44	2	716	383,857	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	54.89	2	726	177,806				PRE DA-3
20	SCS Runoff	98.86	2	716	199,667				POST DA-3A
21	Reservoir	3.318	2	838	164,073	20	1109.81	119,325	BASIN 3
22	SCS Runoff	14.65	2	718	29,320				POST DA-3B
23	Combine	16.66	2	718	193,393	21, 22			POST DA-3 W/ PCSM
24	Combine	113.30	2	716	228,987	20, 22,			POST DA-3 NO PCSM
Me	adows Landii	ng - 2021-	 •7-28.gp\	 N	Return F	Period: 10 Y	/ear	Friday, 07	/ 30 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 116.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 374,886 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

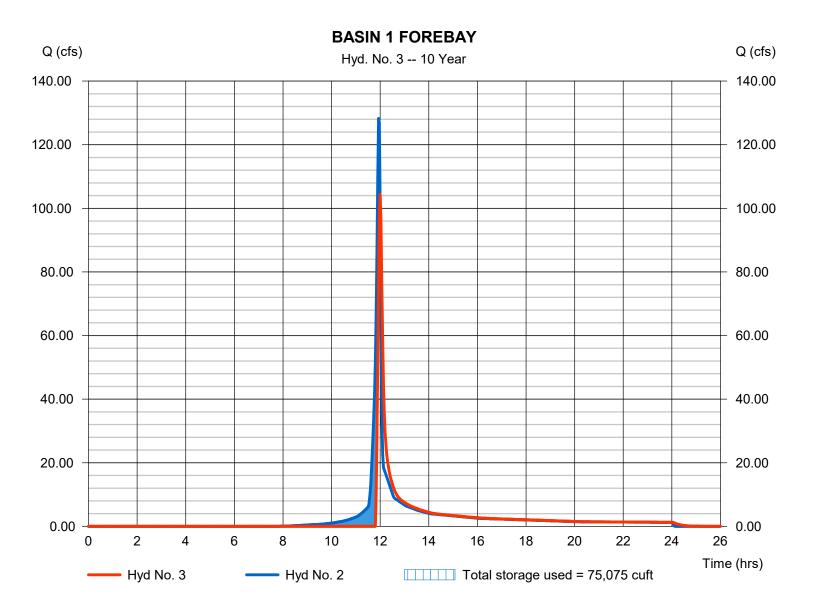

62

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 128.23 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 259,722 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

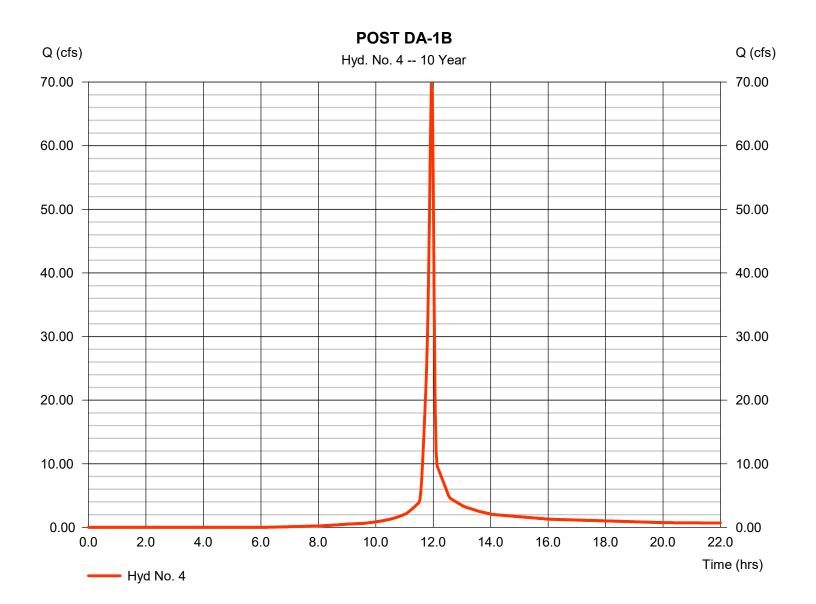

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 104.40 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 218,039 cuft
Inflow hyd. No.	= 2 - POST DA-1A	Max. Elevation	= 1118.14 ft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 75,075 cuft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 75,075 cuft

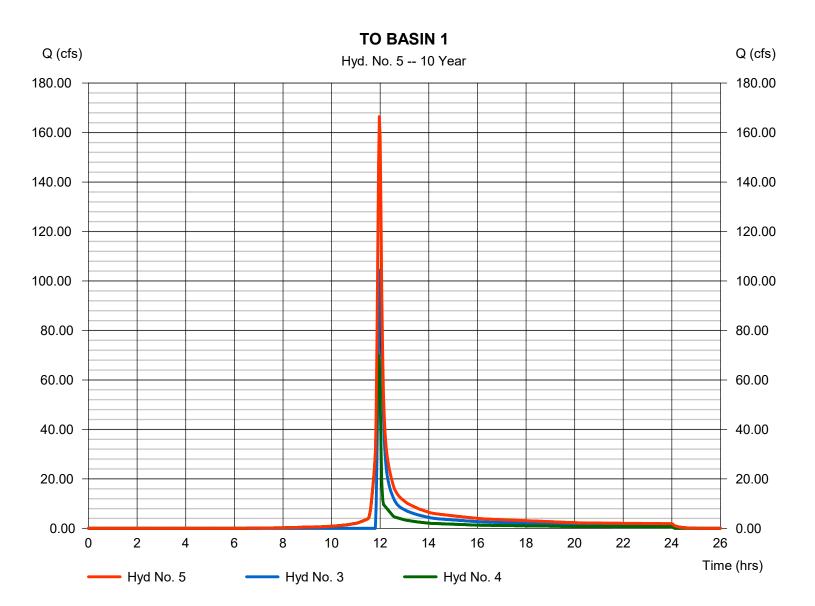
Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

POST DA-1B

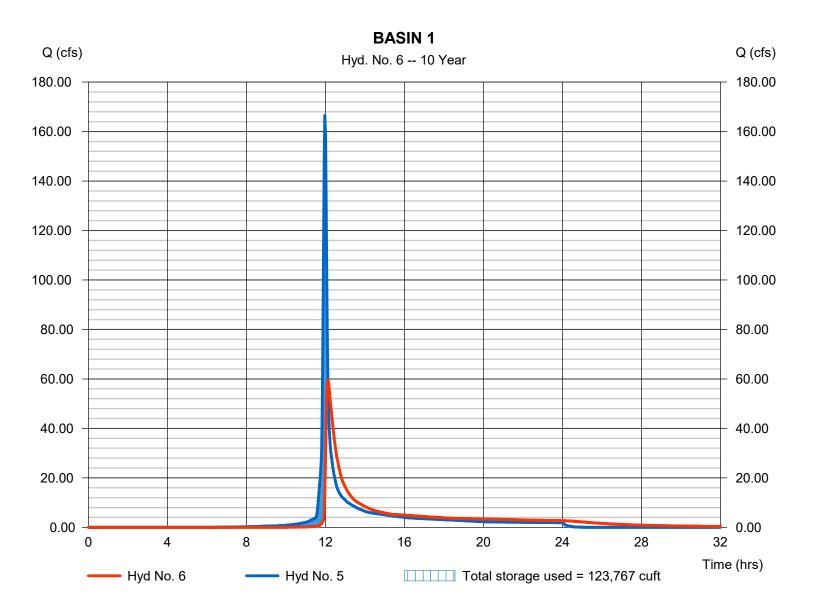

Hydrograph type	= SCS Runoff	Peak discharge	= 69.76 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 143,457 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

66

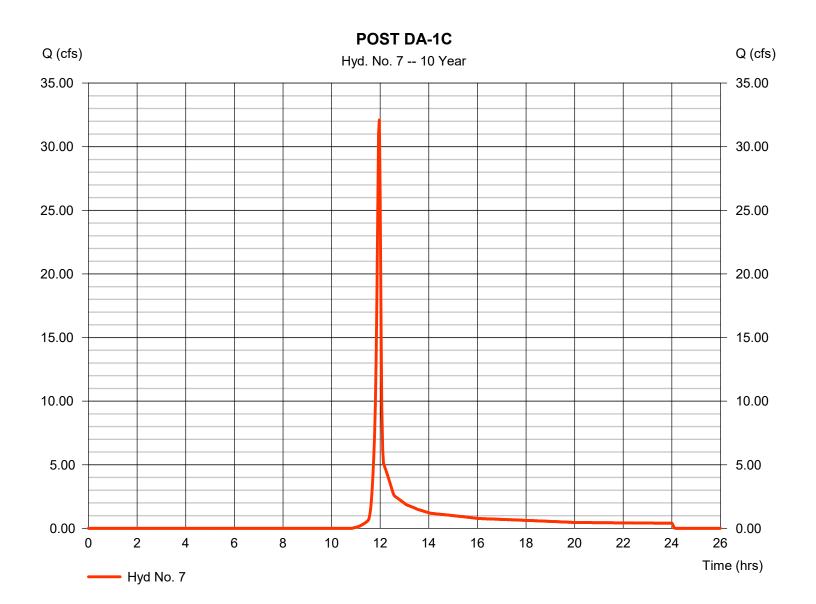

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

Hydrograph type	= Reservoir	Peak discharge	= 59.50 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 360,768 cuft
Inflow hyd. No.	= 5 - TO BASIN 1	Max. Elevation	= 1115.73 ft
Reservoir name	= BASIN 1	Max. Storage	= 123,767 cuft

Storage Indication method used.

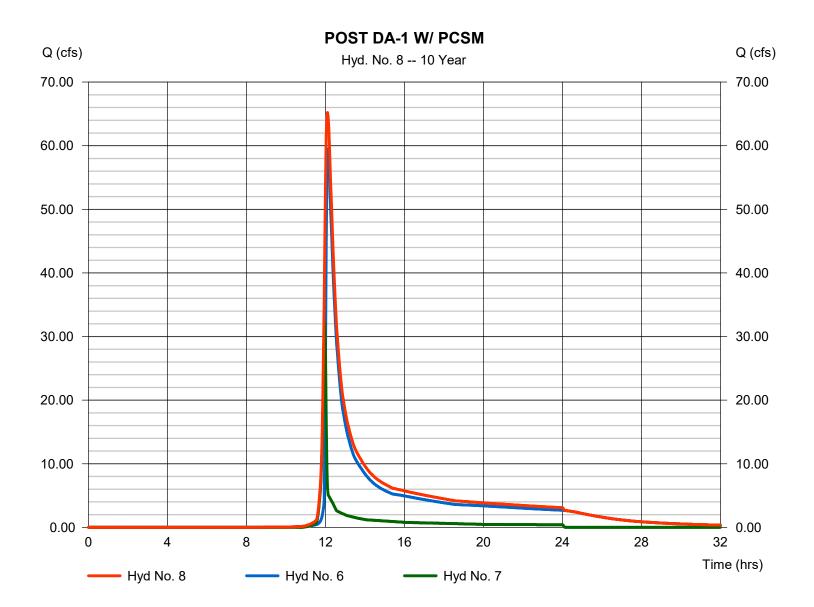


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

POST DA-1C

Hydrograph type	= SCS Runoff	Peak discharge	= 32.10 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 64,334 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

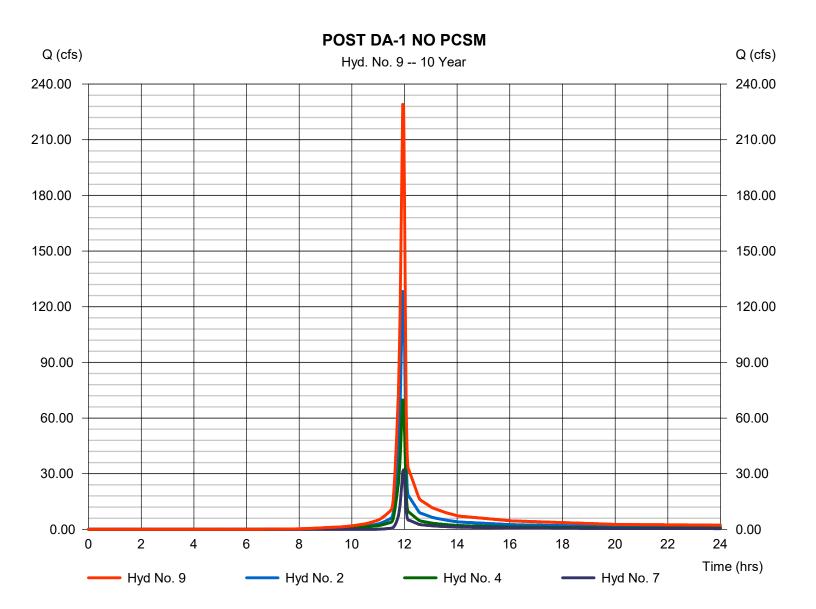

68

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

Hydrograph type	 = Combine = 10 yrs = 2 min = 6, 7 	Peak discharge	= 65.20 cfs
Storm frequency		Time to peak	= 12.10 hrs
Time interval		Hyd. volume	= 425,101 cuft
Inflow hyds.		Contrib. drain. area	= 17.190 ac
Inflow hyds.	= 6, 7	Contrib. drain. area	= 17.190 ac

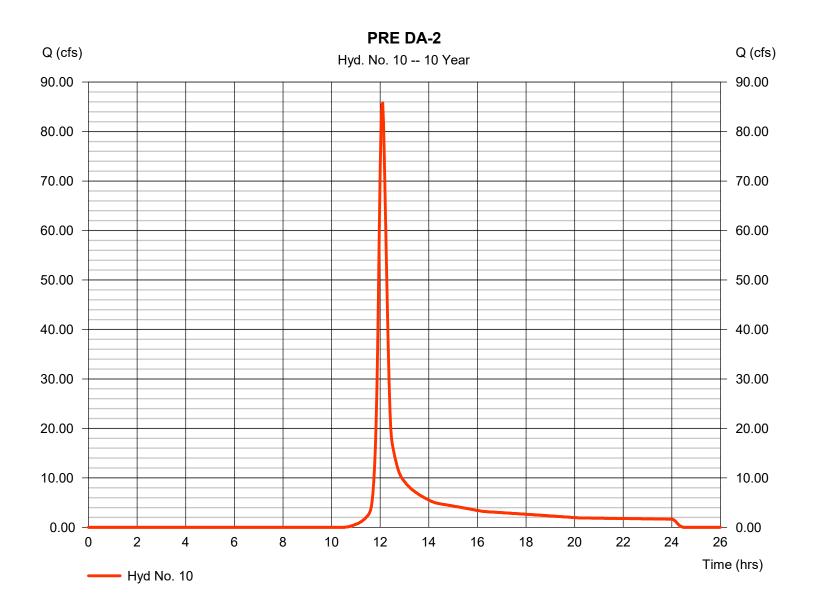


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 229.05 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 467,512 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac

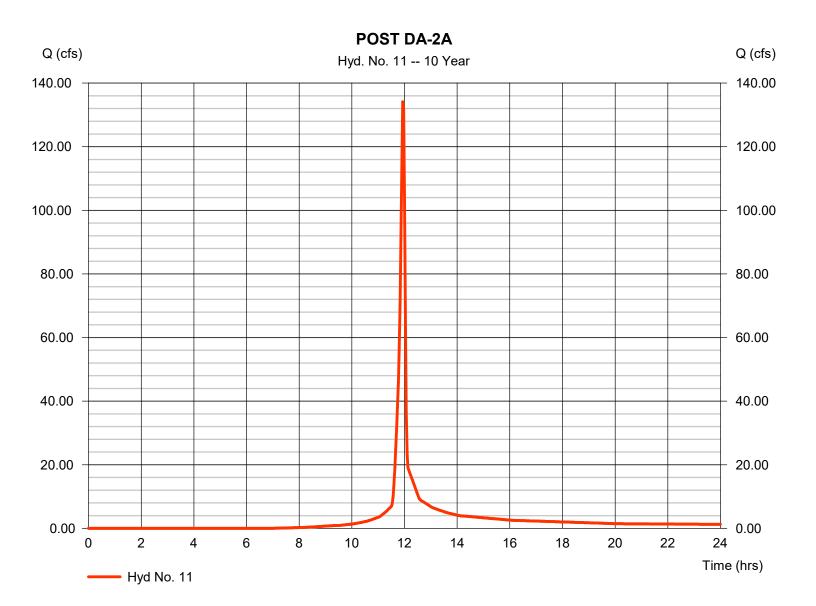

70

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 85.79 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 277,913 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



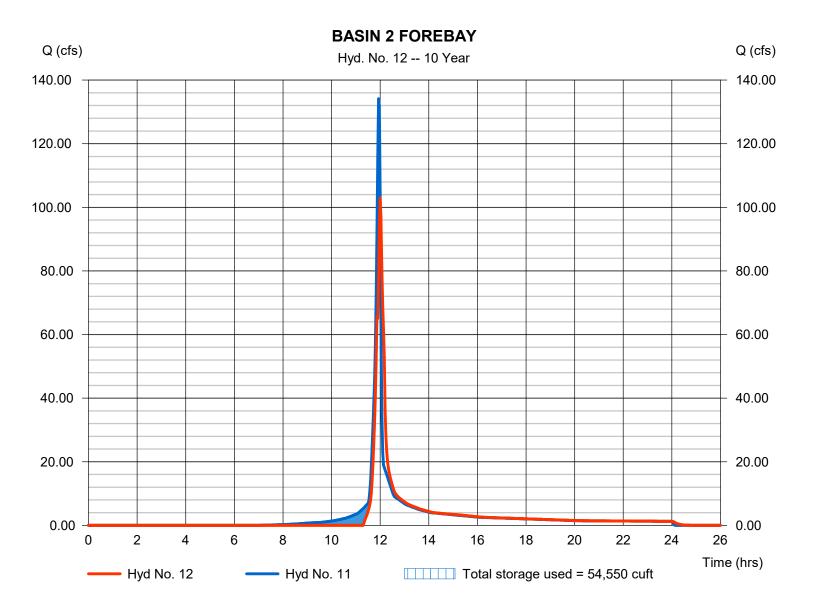
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 134.12 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 273,261 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

72

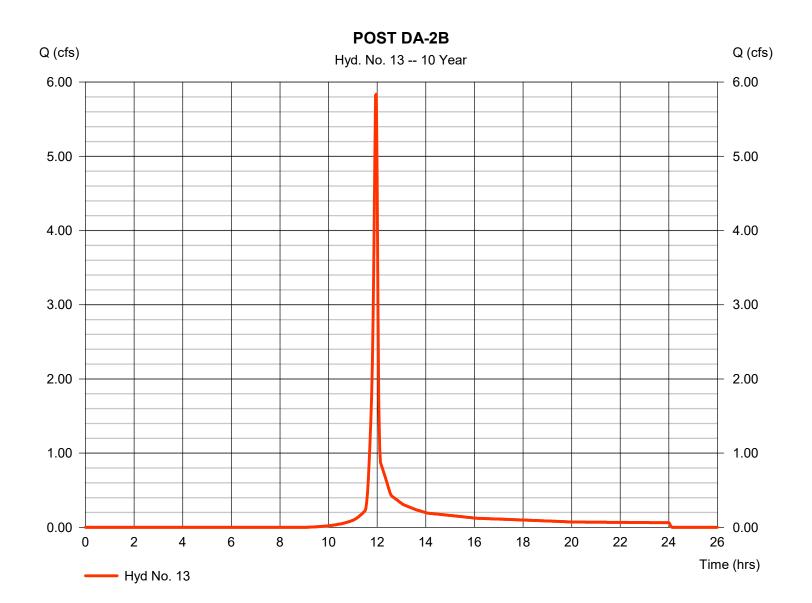

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 102.93 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 254,931 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1122.80 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 54,550 cuft

Storage Indication method used.

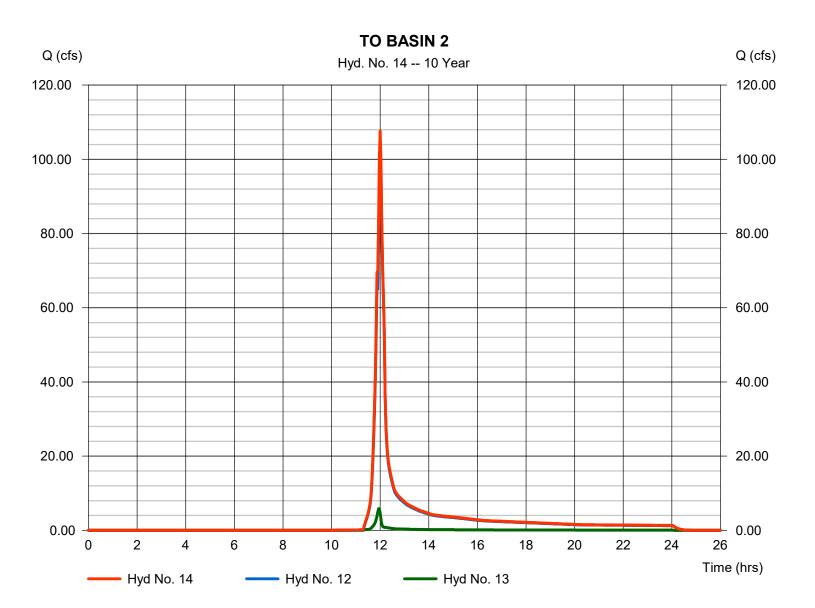


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 5.837 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 11,752 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



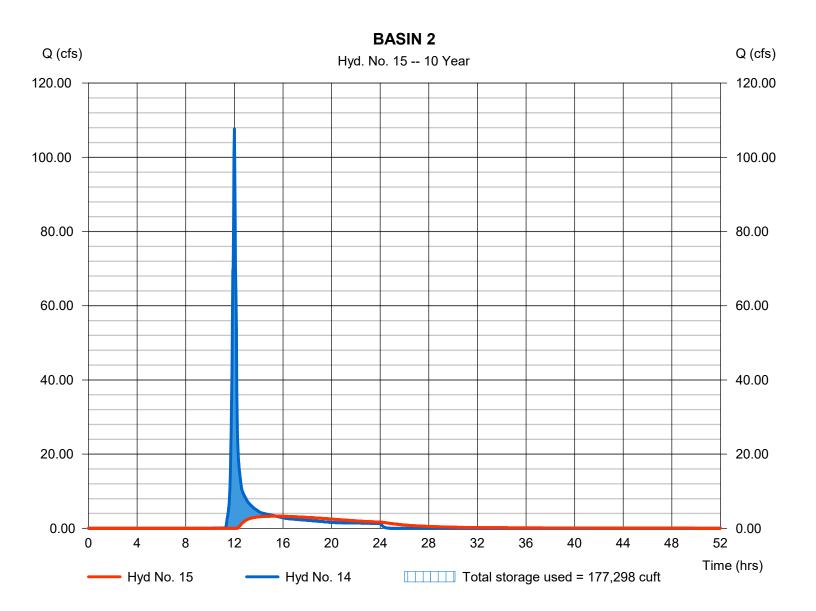
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

Hydrograph type	= Combine	Peak discharge	= 107.64 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 266,683 cuft
Inflow hyds.	= 12, 13	Contrib. drain. area	= 2.240 ac

75

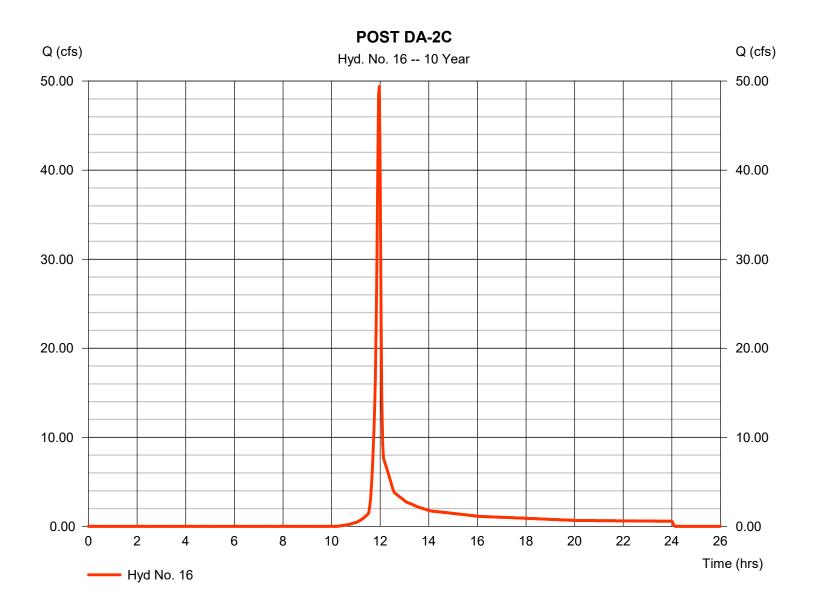

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

BASIN 2

= Reservoir	Peak discharge	= 3.286 cfs
= 10 yrs	Time to peak	= 15.43 hrs
= 2 min	Hyd. volume	= 134,399 cuft
= 14 - TO BASIN 2	Max. Elevation	= 1115.63 ft
= BASIN 2	Max. Storage	= 177,298 cuft
	= 10 yrs = 2 min = 14 - TO BASIN 2	= 10 yrsTime to peak= 2 minHyd. volume= 14 - TO BASIN 2Max. Elevation

Storage Indication method used.

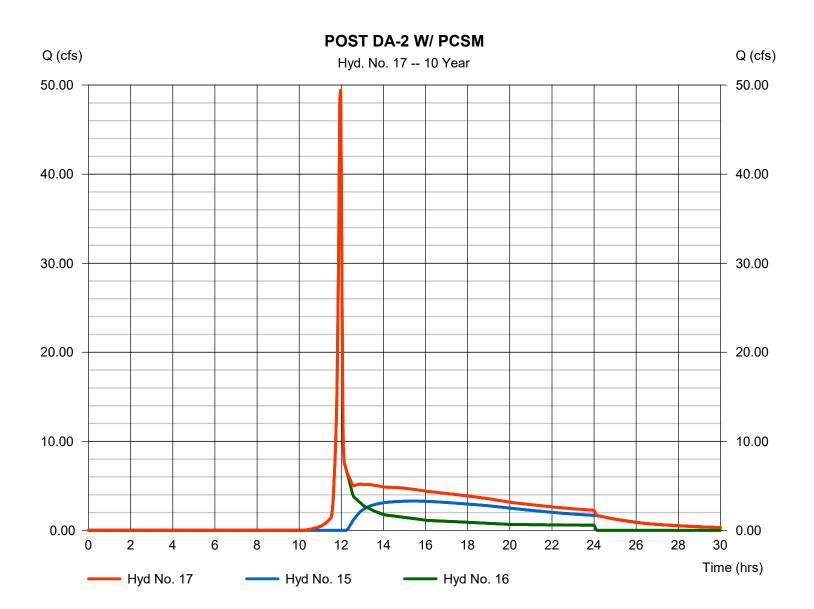


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 49.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 98,843 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

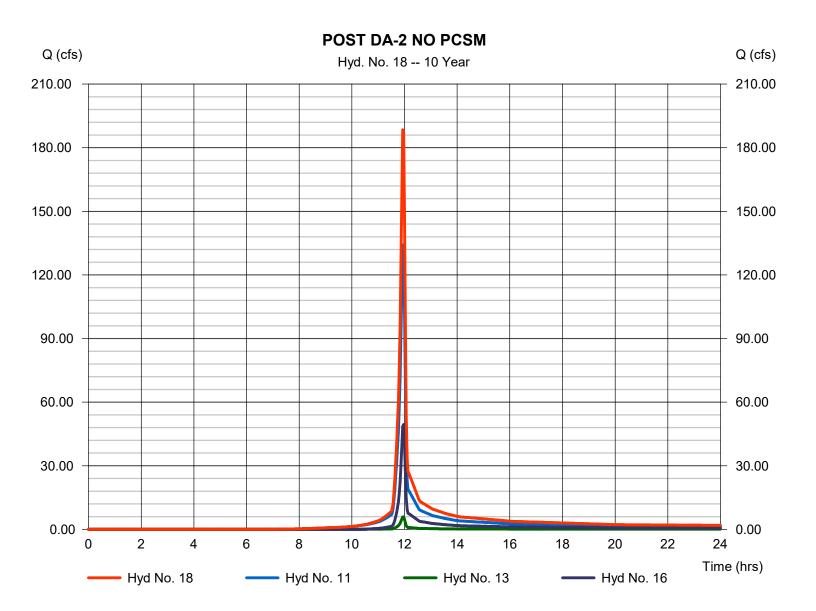


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 49.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 233,241 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 22.710 ac



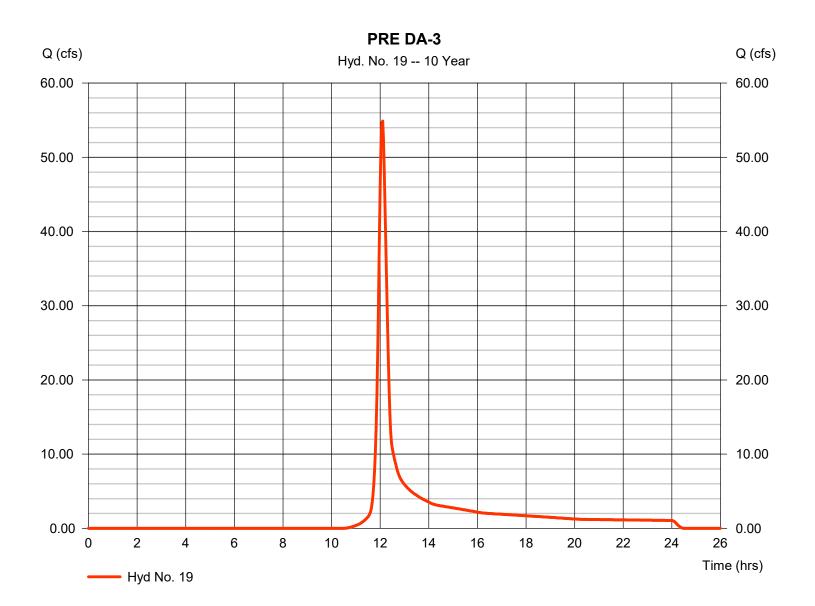
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 188.44 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 383,857 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac

Friday, 07 / 30 / 2021

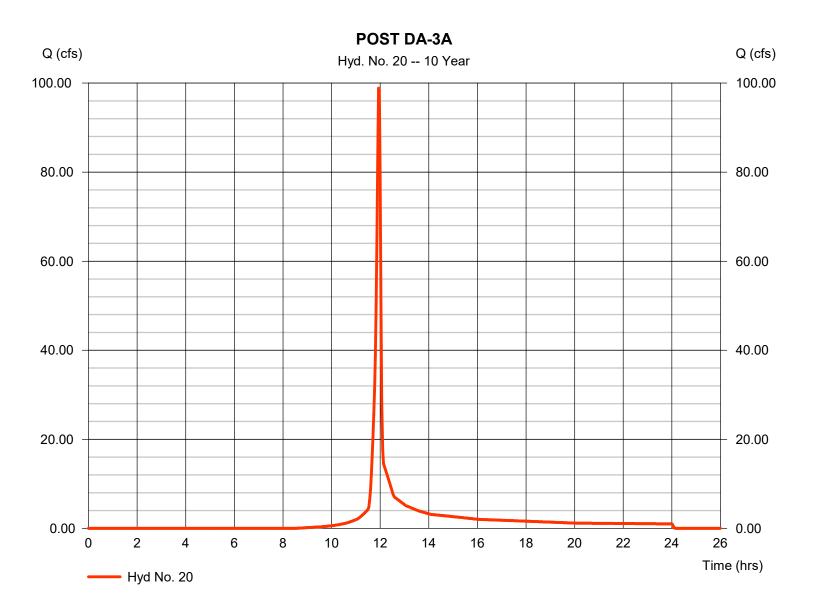

79

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 54.89 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 177,806 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



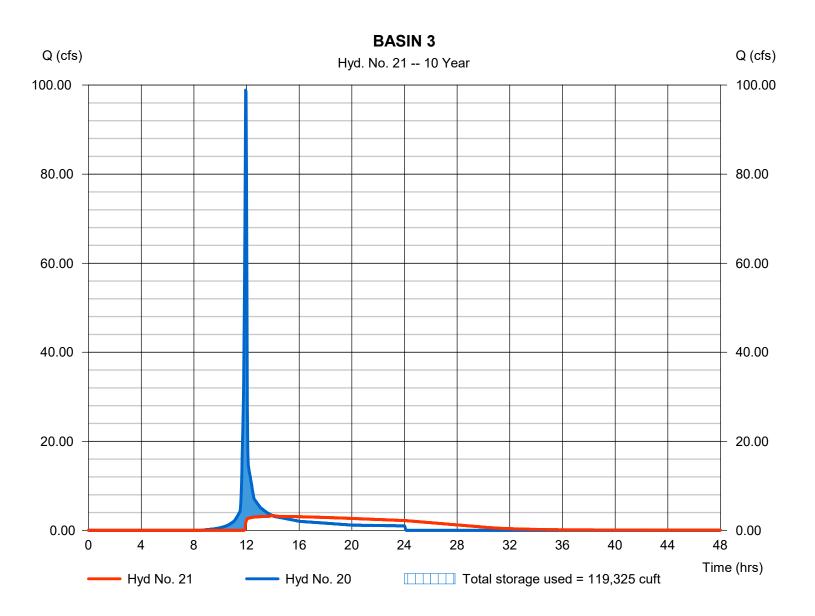
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 98.86 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 199,667 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

81

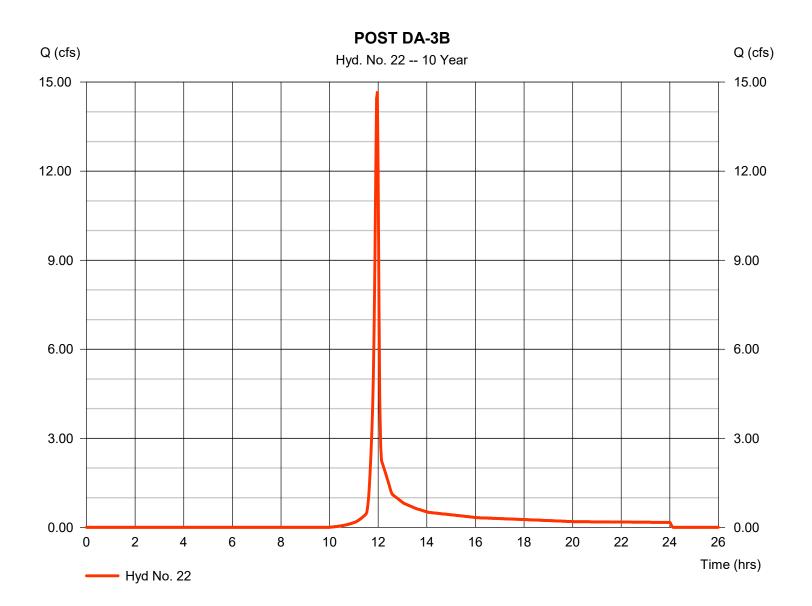

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

BASIN 3

Hydrograph type	= Reservoir	Peak discharge	= 3.318 cfs
Storm frequency	= 10 yrs	Time to peak	= 13.97 hrs
Time interval	= 2 min	Hyd. volume	= 164,073 cuft
Inflow hyd. No.	= 20 - POST DA-3A	Max. Elevation	= 1109.81 ft
Reservoir name	= BASIN 3	Max. Storage	= 119,325 cuft

Storage Indication method used.

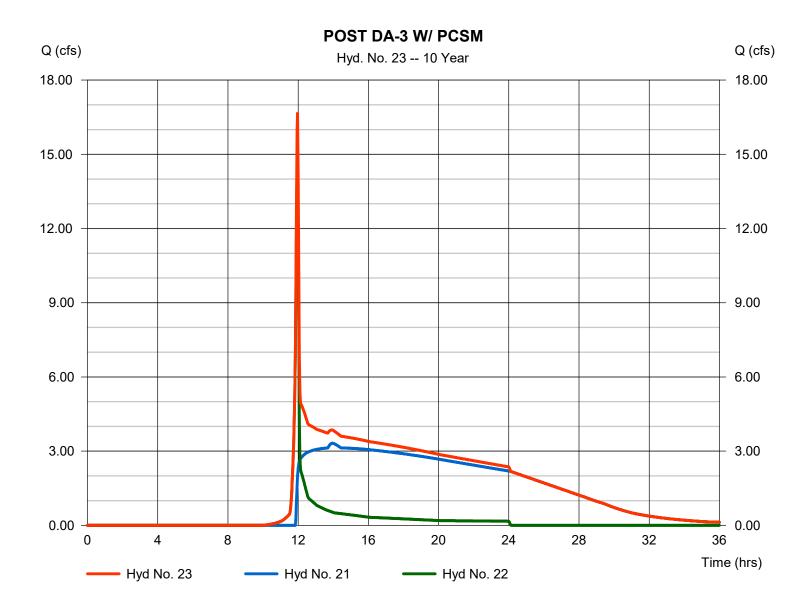


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 14.65 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 29,320 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.38 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

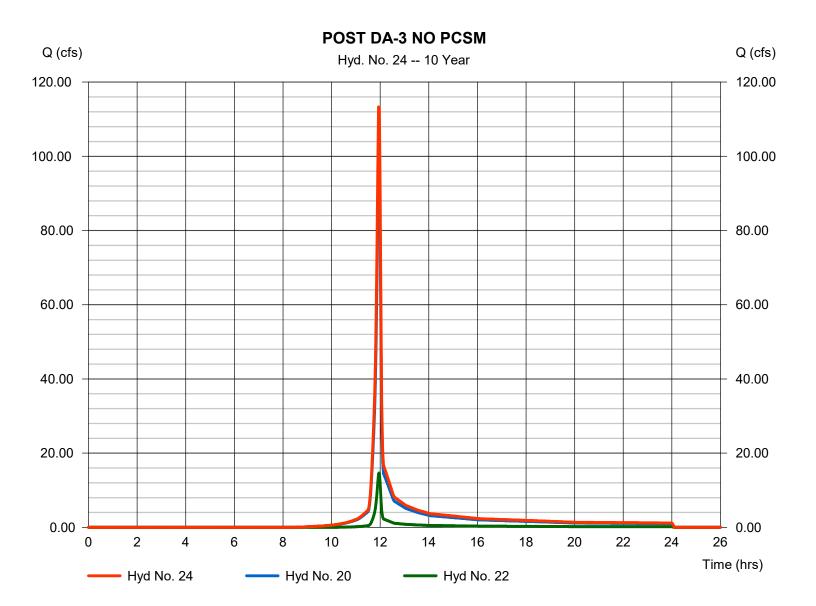


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 16.66 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 193,393 cuft
Inflow hyds.	= 21, 22	Contrib. drain. area	= 6.420 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

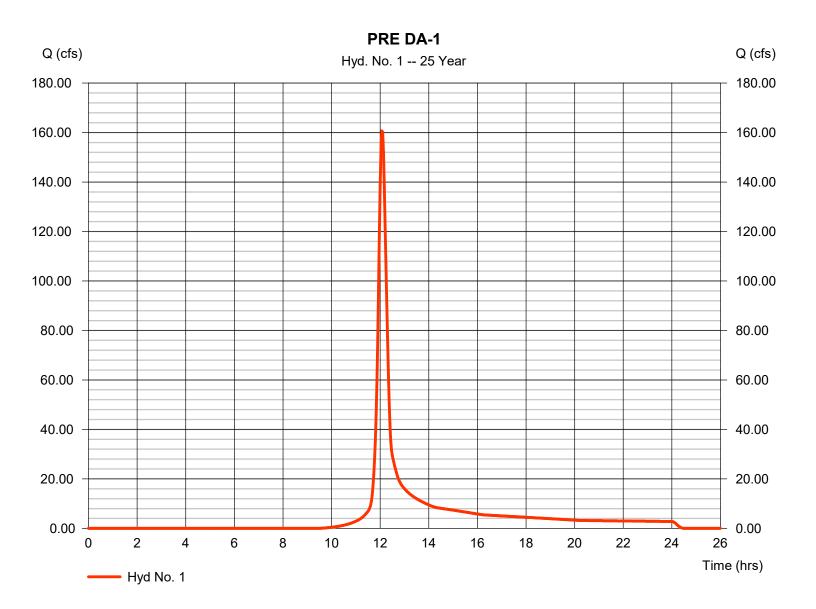
Hyd. No. 24

POST DA-3 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 113.30 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 228,987 cuft
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260 ac

85

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

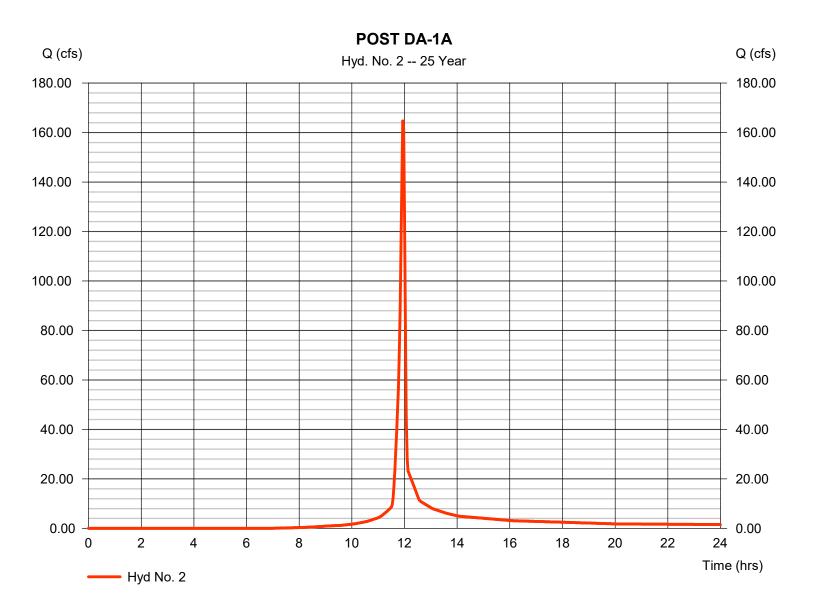

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	160.72	2	724	509,605				PRE DA-1
2	SCS Runoff	164.71	2	716	335,757				POST DA-1A
3	Reservoir	139.74	2	720	294,074	2	1118.51	83,345	BASIN 1 FOREBAY
4	SCS Runoff	87.22	2	716	181,278				POST DA-1B
5	Combine	220.54	2	718	475,352	3, 4			TO BASIN 1
6	Reservoir	77.95	2	720	474,605	5	1116.53	164,875	BASIN 1
7	SCS Runoff	44.68	2	718	89,355				POST DA-1C
8	Combine	114.36	2	720	563,959	6, 7			POST DA-1 W/ PCSM
9	Combine	295.81	2	716	606,390	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	119.41	2	724	380,424				PRE DA-2
11	SCS Runoff	169.91	2	716	349,216				POST DA-2A
12	Reservoir	145.05	2	720	330,885	11	1123.37	62,541	BASIN 2 FOREBAY
13	SCS Runoff	7.702	2	716	15,564				POST DA-2B
14	Combine	151.18	2	720	346,449	12, 13			TO BASIN 2
15	Reservoir	5.084	2	856	214,144	14	1116.68	218,817	BASIN 2
16	SCS Runoff	66.92	2	718	134,363				POST DA-2C
17	Combine	66.92	2	718	348,507	15, 16			POST DA-2 W/ PCSM
18	Combine	244.06	2	716	499,142	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	76.40	2	724	243,391				PRE DA-3
20	SCS Runoff	128.85	2	716	261,195				POST DA-3A
21	Reservoir	16.17	2	734	225,601	20	1110.27	130,947	BASIN 3
22	SCS Runoff	19.67	2	718	39,588				POST DA-3B
23	Combine	22.41	2	718	265,189	21, 22			POST DA-3 W/ PCSM
24	Combine	148.45	2	716	300,783	20, 22,			POST DA-3 NO PCSM
Ме	adows Landir	 ng - 2021-	- 7-28.gpv	v	Return F	Period: 25 Y	/ear	Friday, 07	/ 30 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 160.72 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 509,605 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

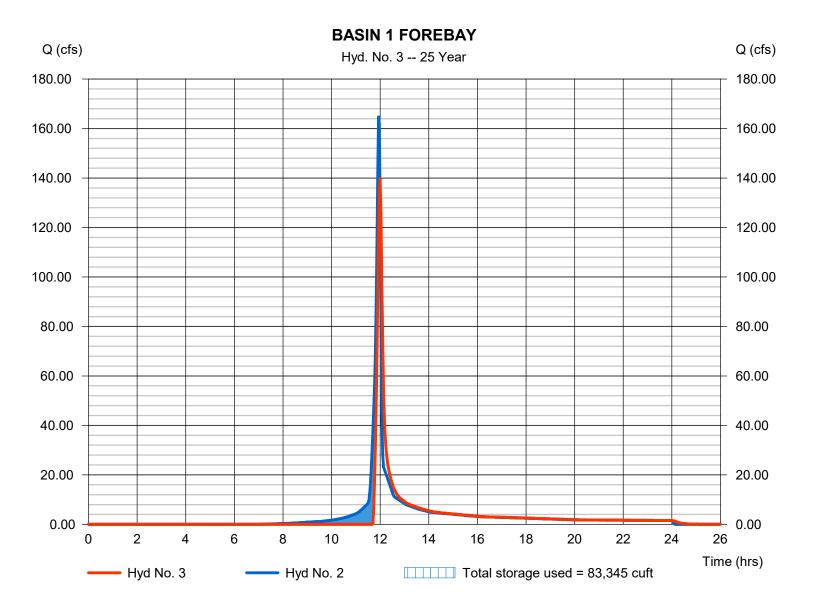

87

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 164.71 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 335,757 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

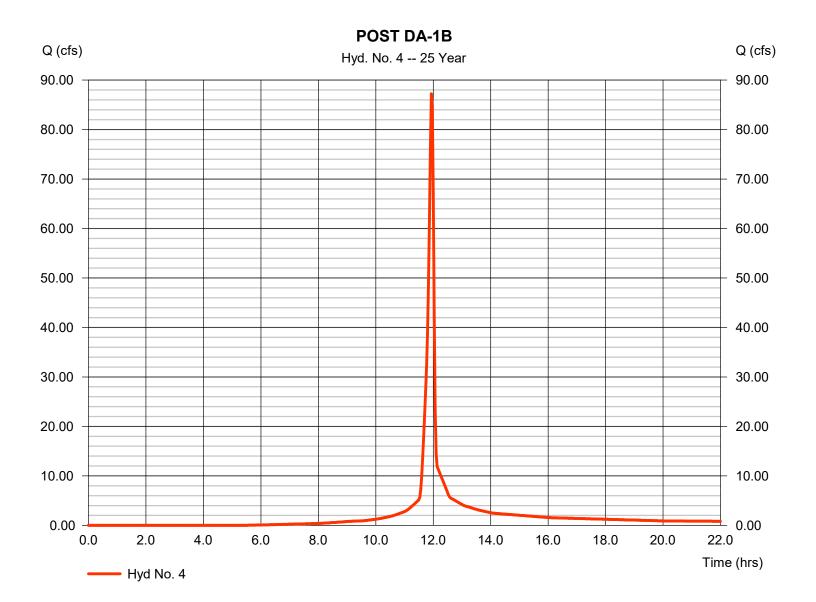

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

= Reservoir	Peak discharge	= 139.74 cfs
= 25 yrs	Time to peak	= 12.00 hrs
= 2 min	Hyd. volume	= 294,074 cuft
= 2 - POST DA-1A	Max. Elevation	= 1118.51 ft
= BASIN 1 FOREBAY	Max. Storage	= 83,345 cuft
	= 25 yrs = 2 min = 2 - POST DA-1A	= 25 yrsTime to peak= 2 minHyd. volume= 2 - POST DA-1AMax. Elevation

Storage Indication method used.

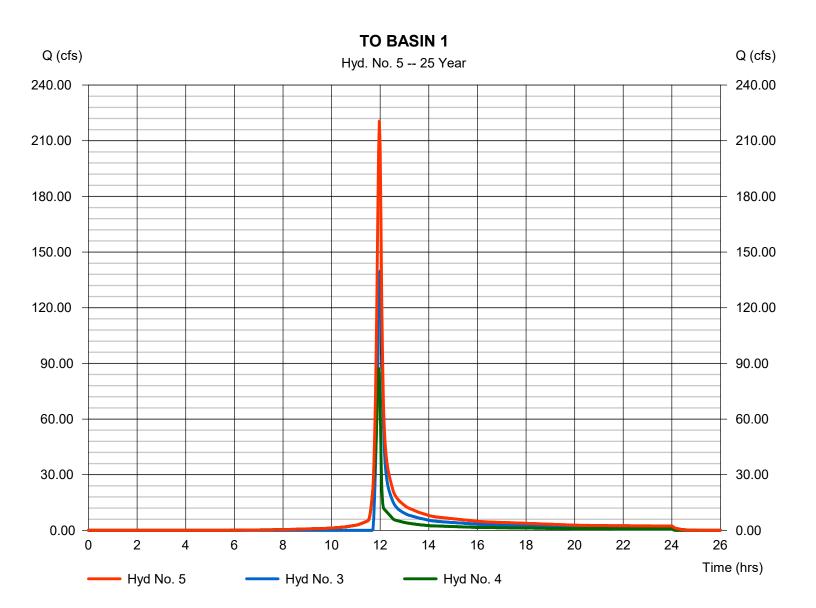

89

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

POST DA-1B

Hydrograph type	= SCS Runoff	Peak discharge	= 87.22 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 181,278 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

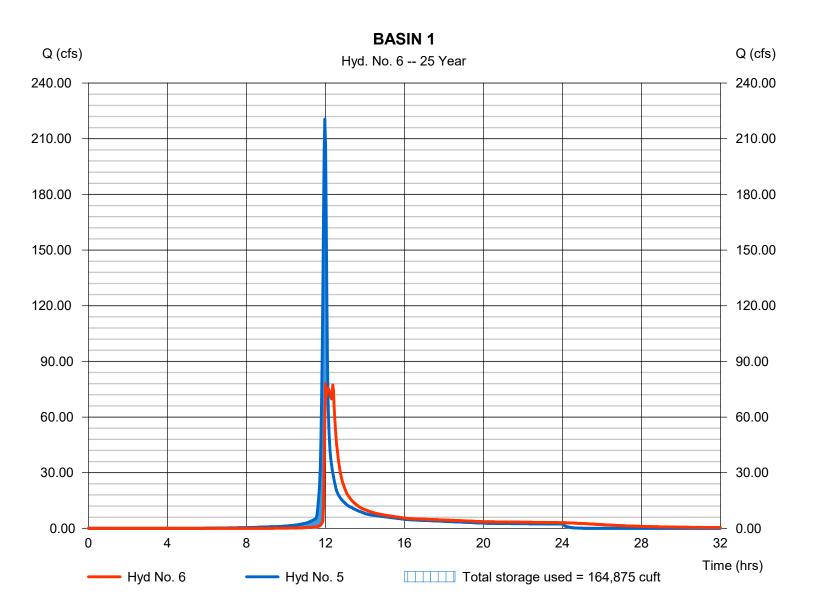


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

Hydrograph type	= Combine	Peak discharge	= 220.54 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 475,352 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.520 ac

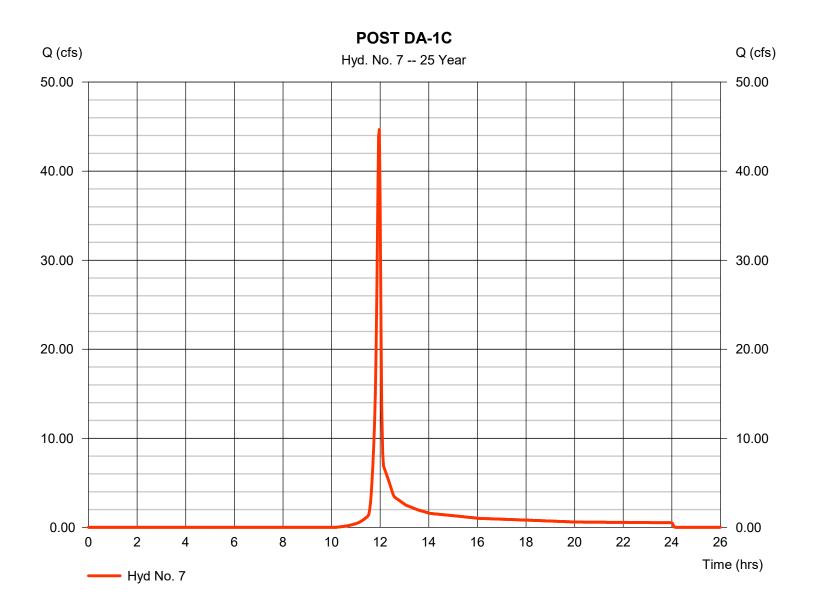

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

i cfs
) hrs
05 cuft
.53 ft
75 cuft
)

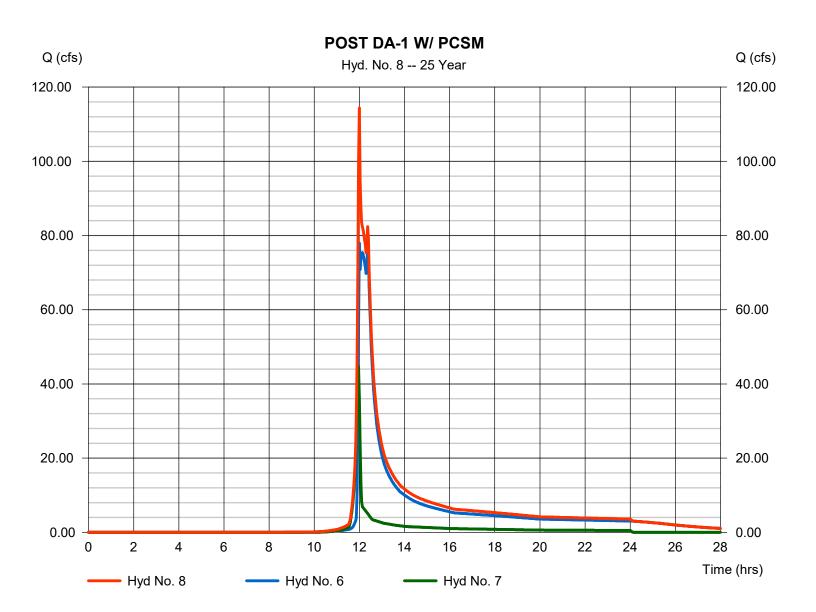
Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

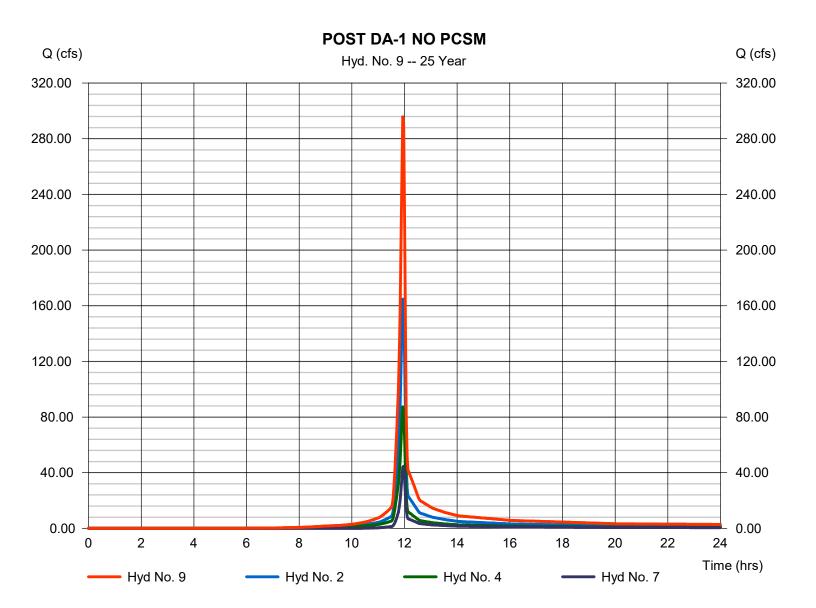
POST DA-1C


Hydrograph type	= SCS Runoff	Peak discharge	= 44.68 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 89,355 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

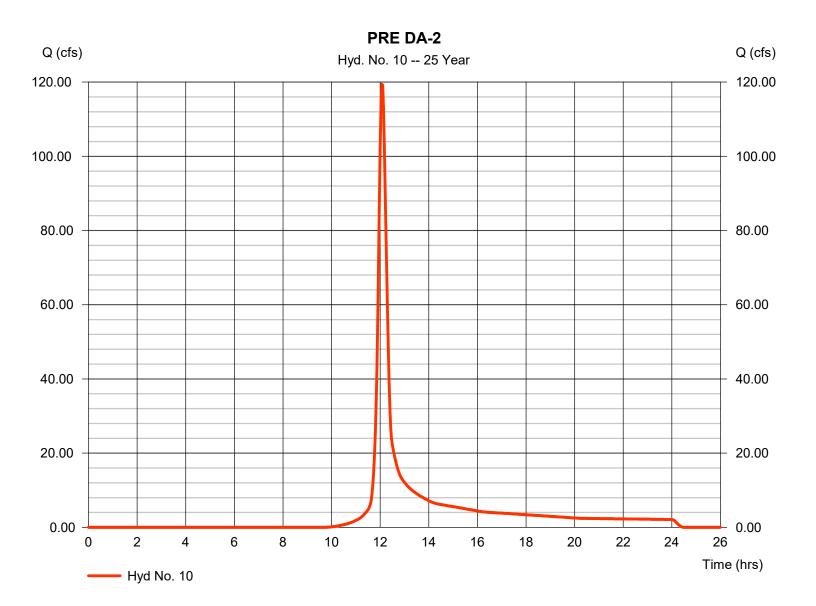

94

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 295.81 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 606,390 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac

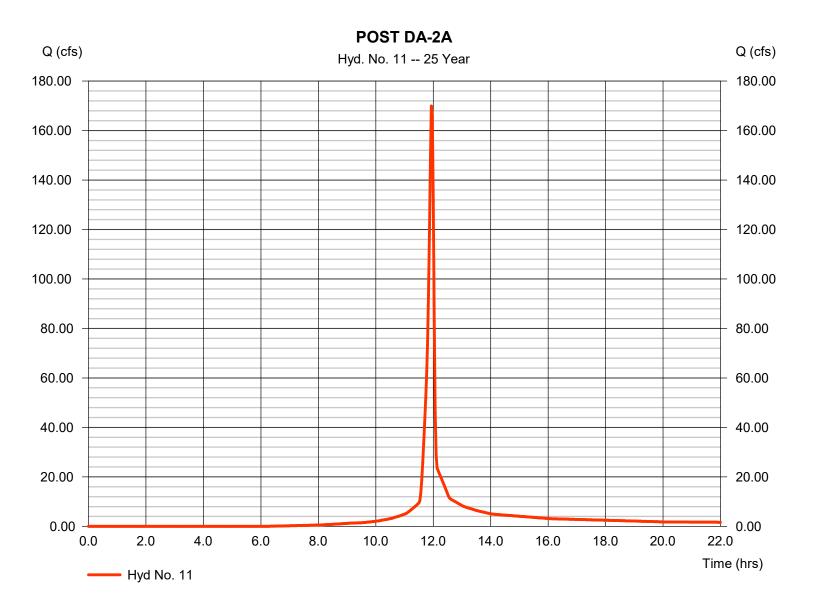

95

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 119.41 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 380,424 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

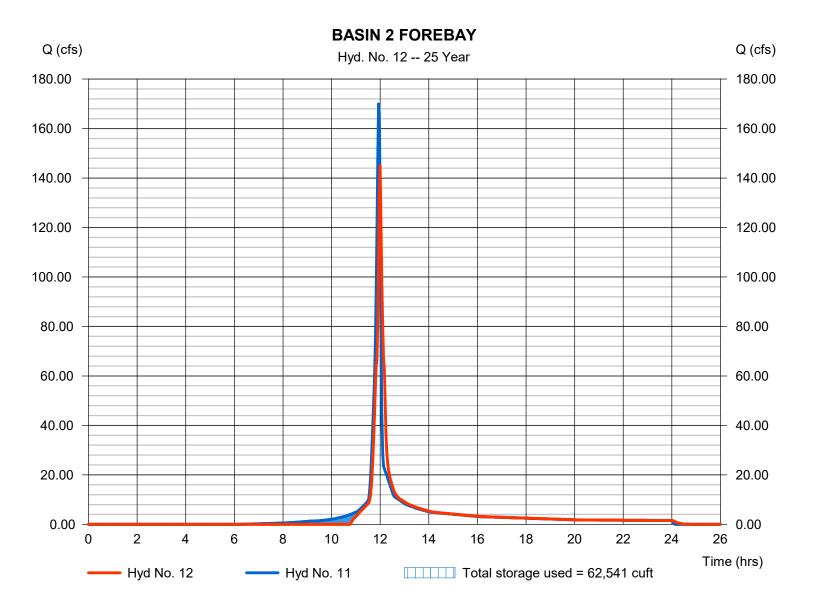


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 169.91 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 349,216 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

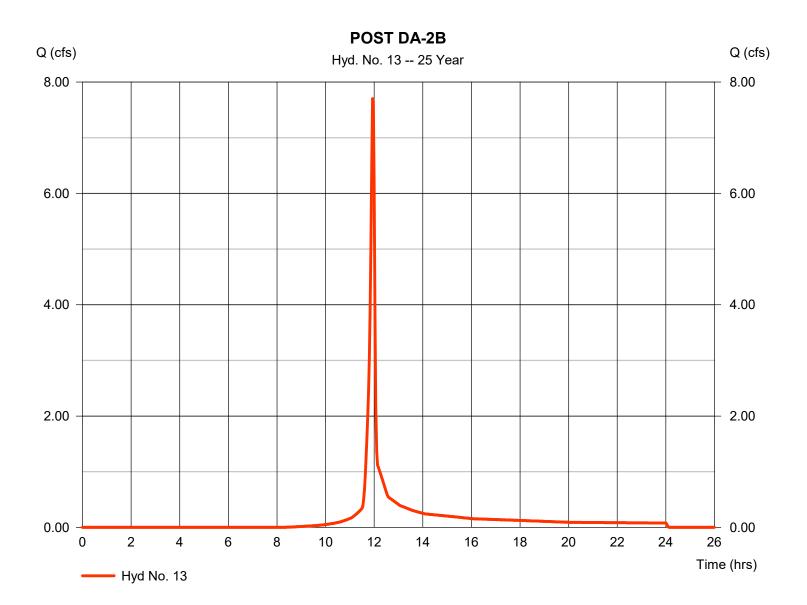

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 145.05 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 330,885 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1123.37 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 62,541 cuft

Storage Indication method used.

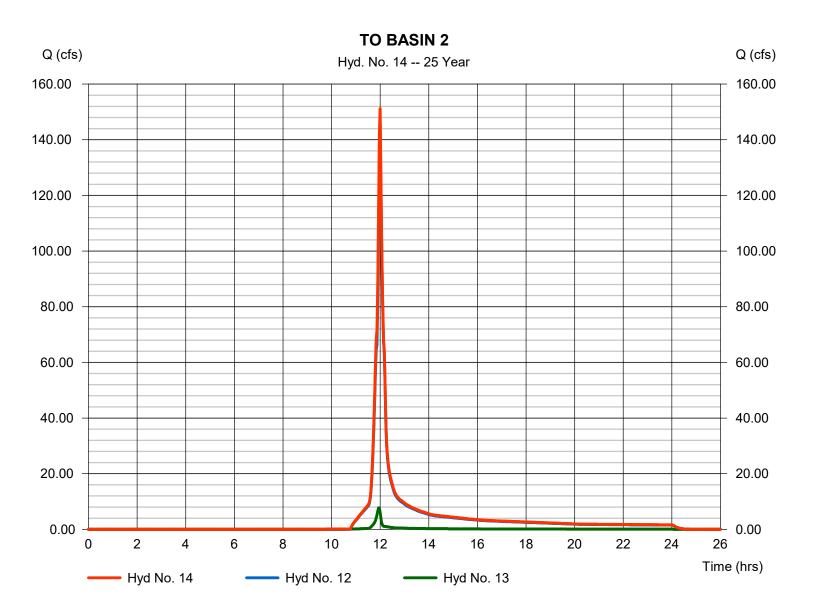

98

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 7.702 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 15,564 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

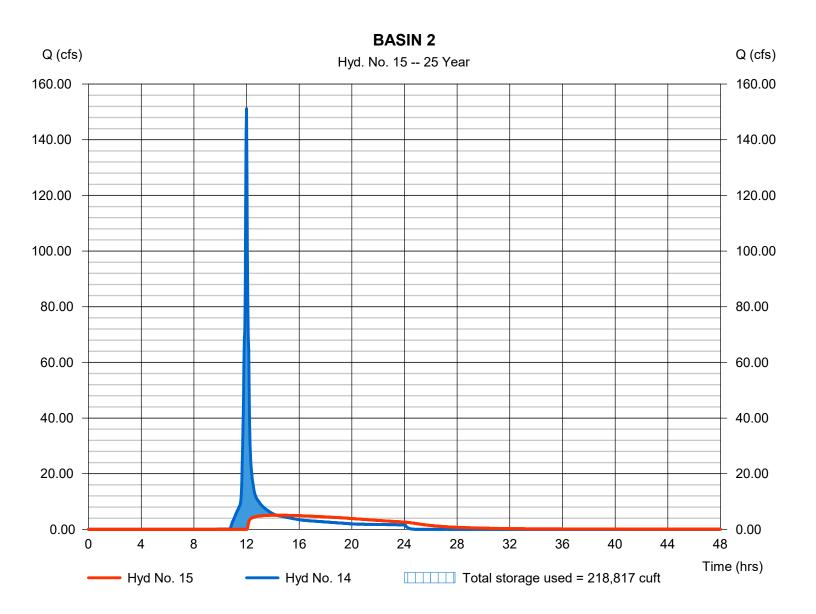


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

Hydrograph type	= Combine	Peak discharge	= 151.18 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 346,449 cuft
Inflow hyds.	= 12, 13	Contrib. drain. area	= 2.240 ac
innow nyus.	- 12, 13	Contrib. drain. area	- 2.240 ac

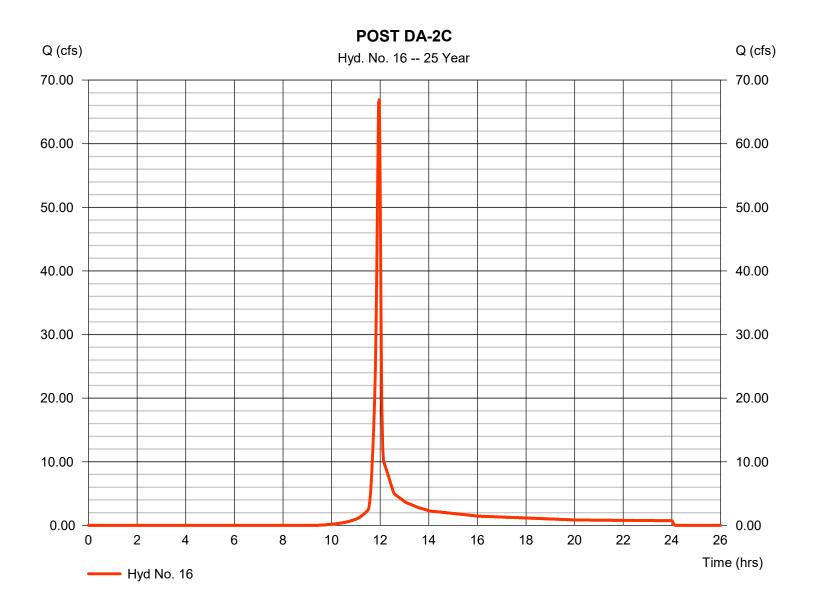

100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

Hydrograph type	= Reservoir	Peak discharge	= 5.084 cfs
Storm frequency	= 25 yrs	Time to peak	= 14.27 hrs
Time interval	= 2 min	Hyd. volume	= 214,144 cuft
Inflow hyd. No.	= 14 - TO BASIN 2	Max. Elevation	= 1116.68 ft
Reservoir name	= BASIN 2	Max. Storage	= 218,817 cuft

Storage Indication method used.

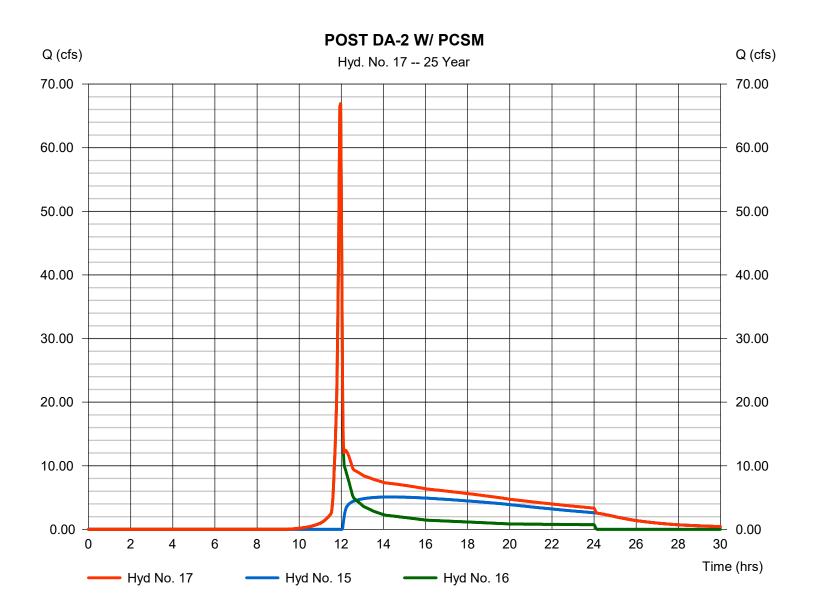


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 66.92 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 134,363 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

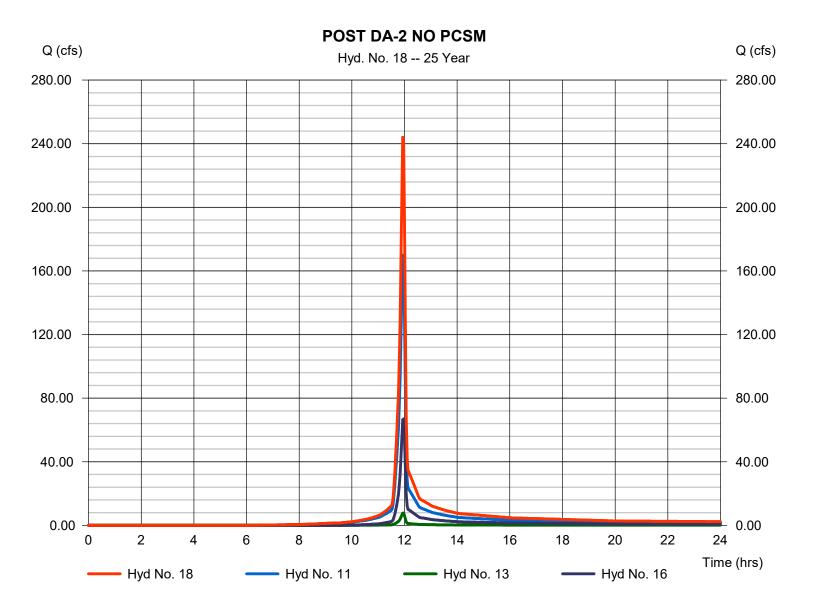


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 66.92 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 348,507 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 22.710 ac

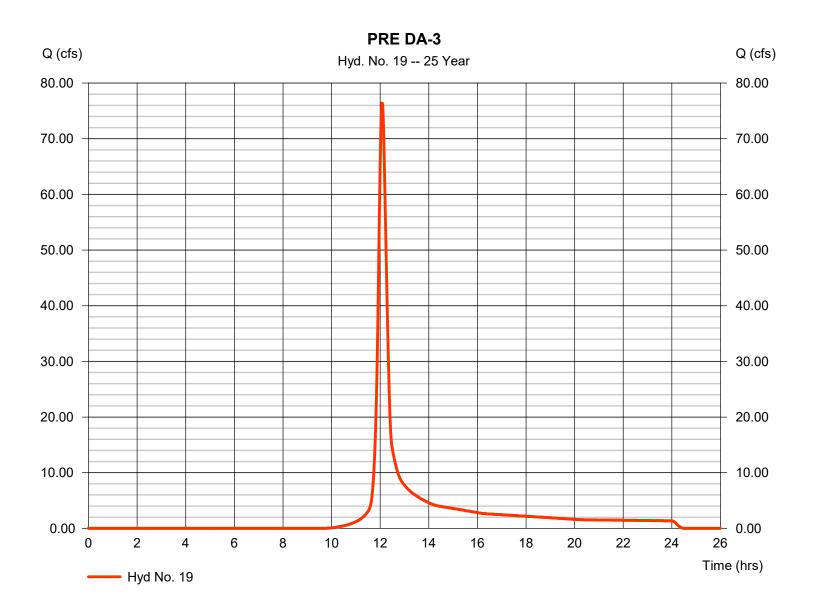


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 244.06 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 499,142 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac

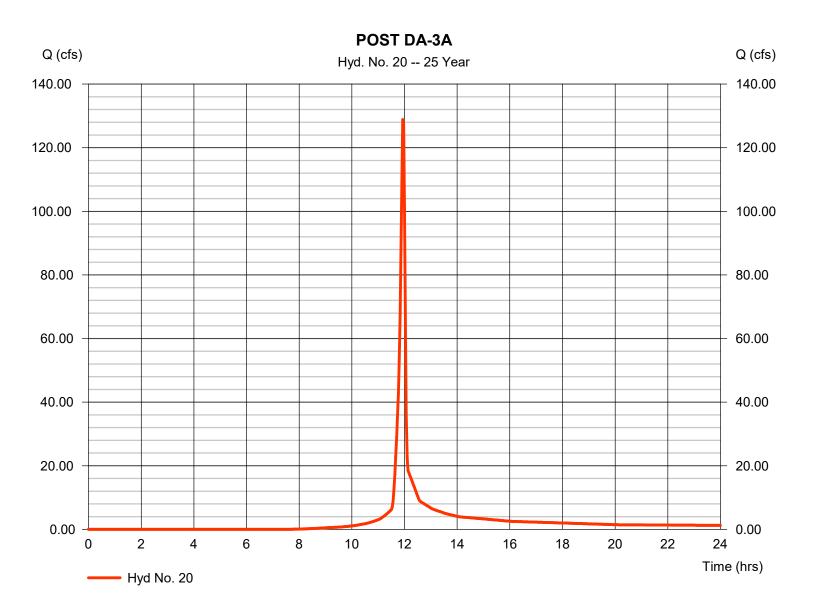

104

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 76.40 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 243,391 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

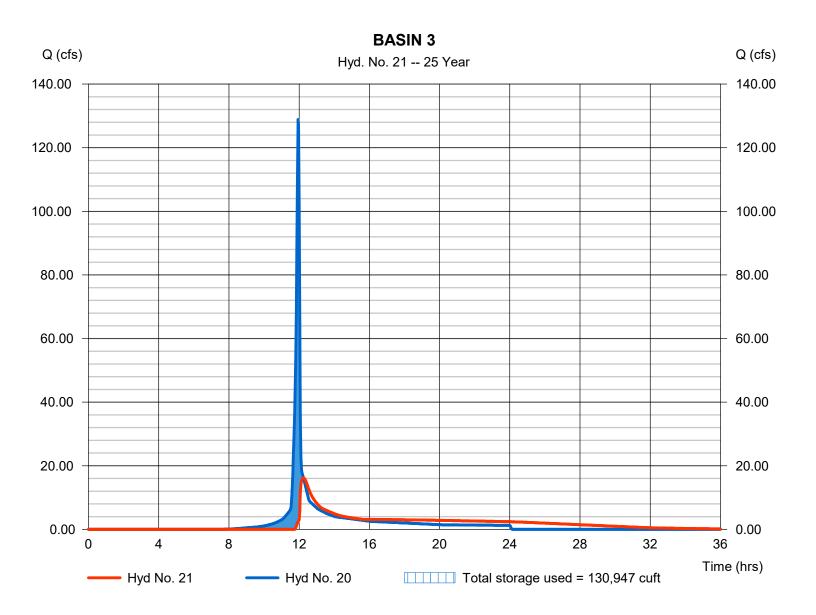


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 128.85 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 261,195 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

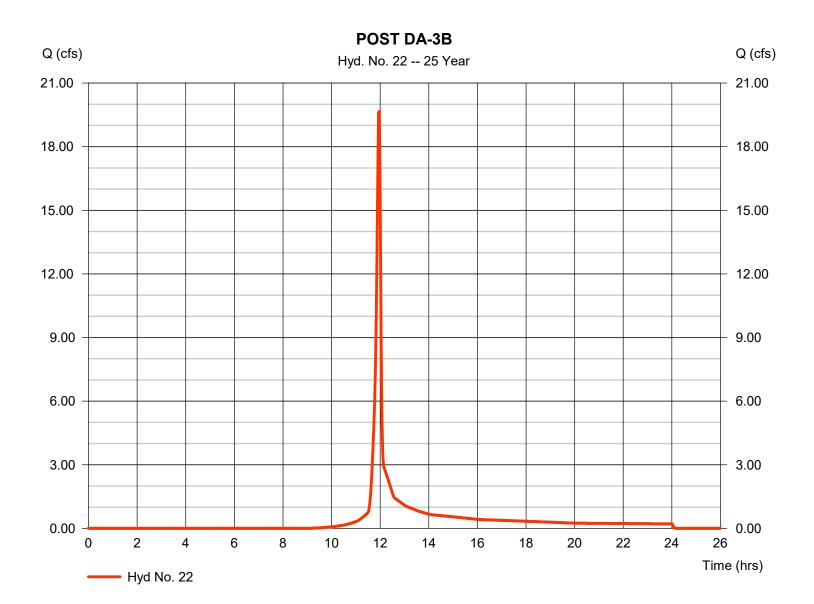

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

BASIN 3

= Reservoir	Peak discharge	= 16.17 cfs
= 25 yrs	Time to peak	= 12.23 hrs
= 2 min	Hyd. volume	= 225,601 cuft
= 20 - POST DA-3A	Max. Elevation	= 1110.27 ft
= BASIN 3	Max. Storage	= 130,947 cuft
	= 25 yrs = 2 min = 20 - POST DA-3A	= 25 yrsTime to peak= 2 minHyd. volume= 20 - POST DA-3AMax. Elevation

Storage Indication method used.

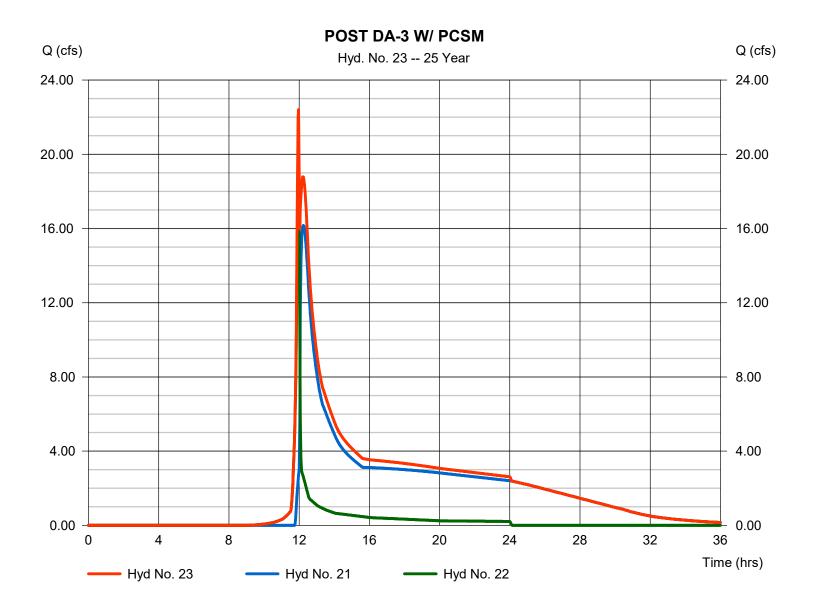

107

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 19.67 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 39,588 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



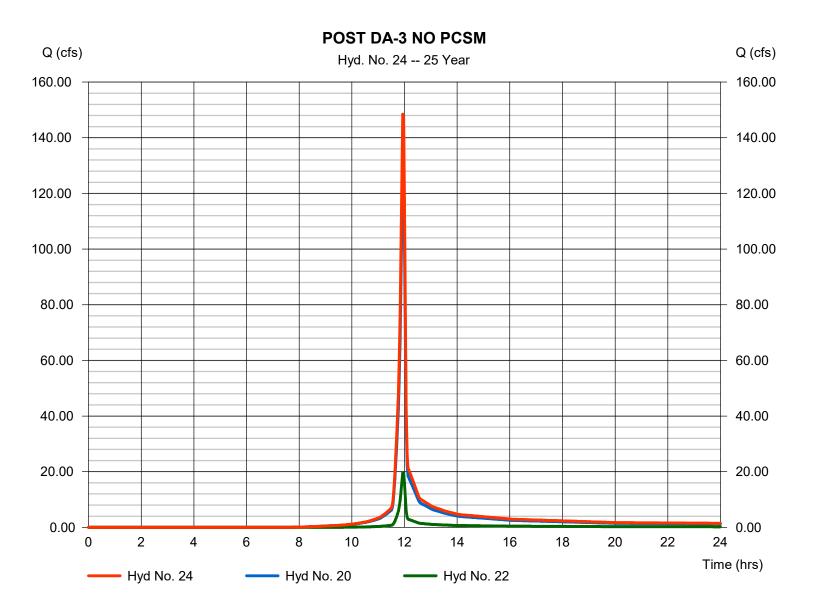
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 22.41 cfs
Storm frequency Time interval	= 25 yrs = 2 min	Time to peak Hyd. volume	= 11.97 hrs = 265,189 cuft
Inflow hyds.	= 21, 22	Contrib. drain. area	= 205,169 cuit = 6.420 ac
,	,		

Friday, 07 / 30 / 2021


109

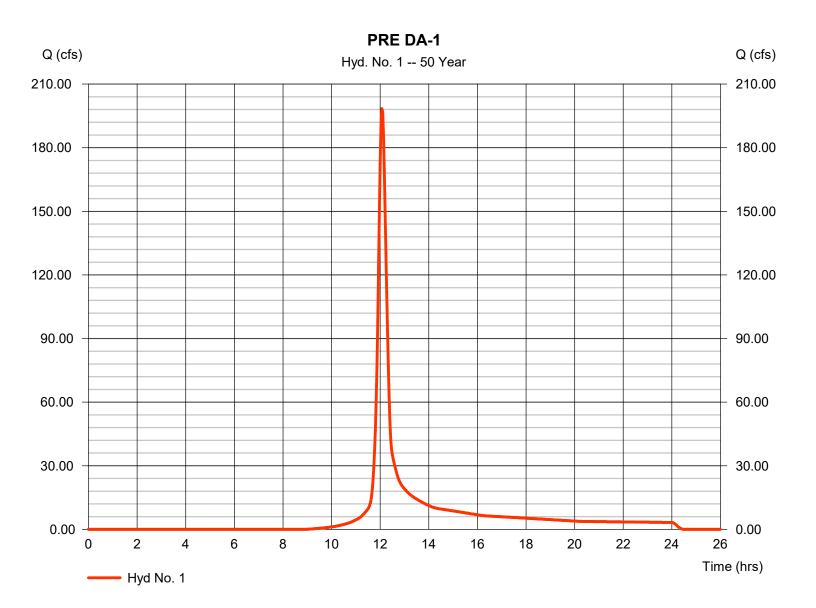
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 24

POST DA-3 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 148.45 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 300,783 cuft
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

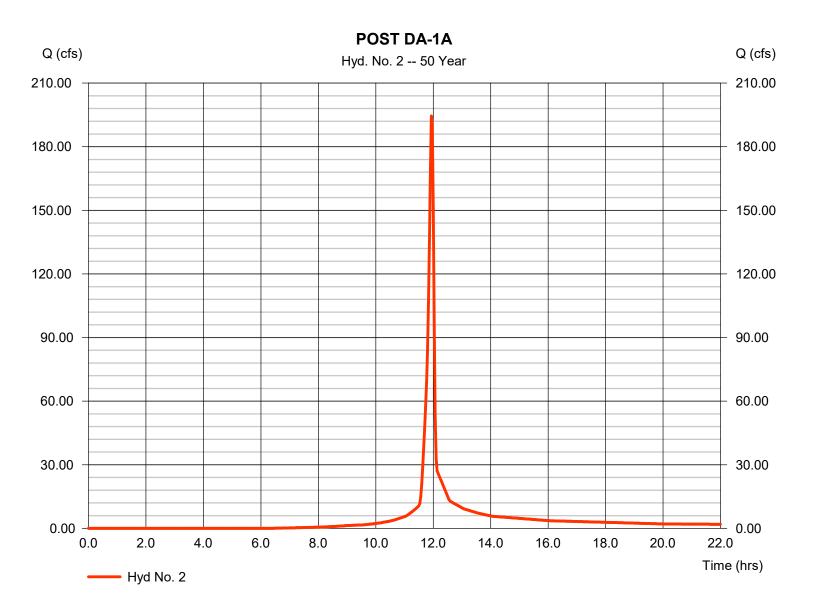

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	198.38	2	724	624,293				PRE DA-1
2	SCS Runoff	194.49	2	716	398,839				POST DA-1A
3	Reservoir	166.97	2	720	357,156	2	1118.78	89,247	BASIN 1 FOREBAY
4	SCS Runoff	101.32	2	716	212,322				POST DA-1B
5	Combine	262.41	2	718	569,478	3, 4			TO BASIN 1
6	Reservoir	87.45	2	728	568,720	5	1117.25	203,476	BASIN 1
7	SCS Runoff	55.31	2	718	110,896				POST DA-1C
8	Combine	125.39	2	718	679,616	6, 7			POST DA-1 W/ PCSM
9	Combine	350.59	2	716	722,058	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	148.27	2	724	468,010				PRE DA-2
11	SCS Runoff	198.96	2	716	411,882				POST DA-2A
12	Reservoir	171.88	2	720	393,551	11	1123.70	67,252	BASIN 2 FOREBAY
13	SCS Runoff	9.260	2	716	18,764				POST DA-2B
14	Combine	179.91	2	718	412,316	12, 13			TO BASIN 2
15	Reservoir	6.335	2	842	279,991	14	1117.68	259,906	BASIN 2
16	SCS Runoff	81.54	2	718	164,602				POST DA-2C
17	Combine	81.54	2	718	444,593	15, 16			POST DA-2 W/ PCSM
18	Combine	289.75	2	716	595,247	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	94.86	2	724	299,428				PRE DA-3
20	SCS Runoff	153.49	2	716	312,545				POST DA-3A
21	Reservoir	37.08	2	724	276,952	20	1110.95	148,499	BASIN 3
22	SCS Runoff	23.92	2	716	48,298				POST DA-3B
23	Combine	48.97	2	722	325,249	21, 22			POST DA-3 W/ PCSM
24	Combine	177.41	2	716	360,843	20, 22,			POST DA-3 NO PCSM
Mea	adows Landir	ng - 2021-	-7-28.gp	N	Return F	Period: 50 Y	/ear	Friday, 07	/ 30 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 198.38 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 624,293 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


112

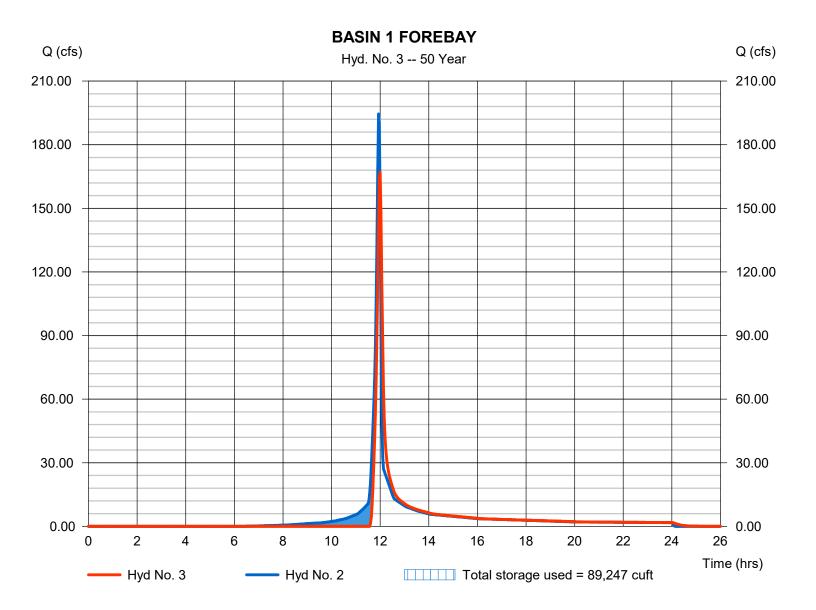
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 194.49 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 398,839 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

113

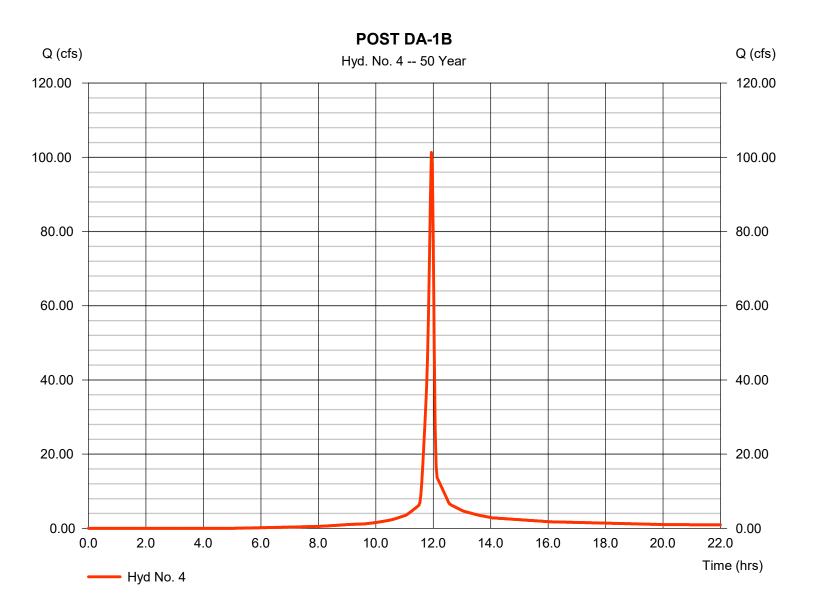

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

= Reservoir	Peak discharge	= 166.97 cfs
= 50 yrs	Time to peak	= 12.00 hrs
= 2 min	Hyd. volume	= 357,156 cuft
= 2 - POST DA-1A	Max. Elevation	= 1118.78 ft
= BASIN 1 FOREBAY	Max. Storage	= 89,247 cuft
	= 50 yrs = 2 min = 2 - POST DA-1A	= 50 yrsTime to peak= 2 minHyd. volume= 2 - POST DA-1AMax. Elevation

Storage Indication method used.

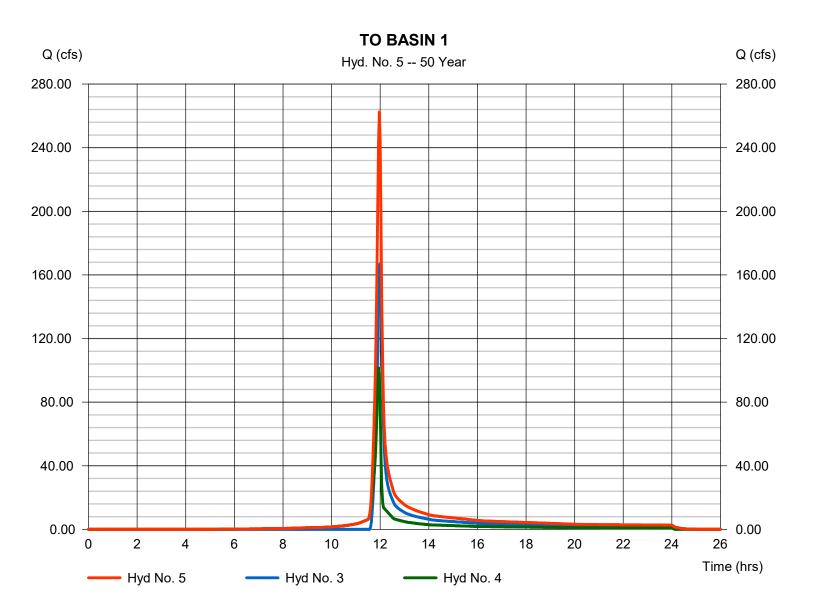


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

POST DA-1B

Hydrograph type	= SCS Runoff	Peak discharge	= 101.32 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 212,322 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

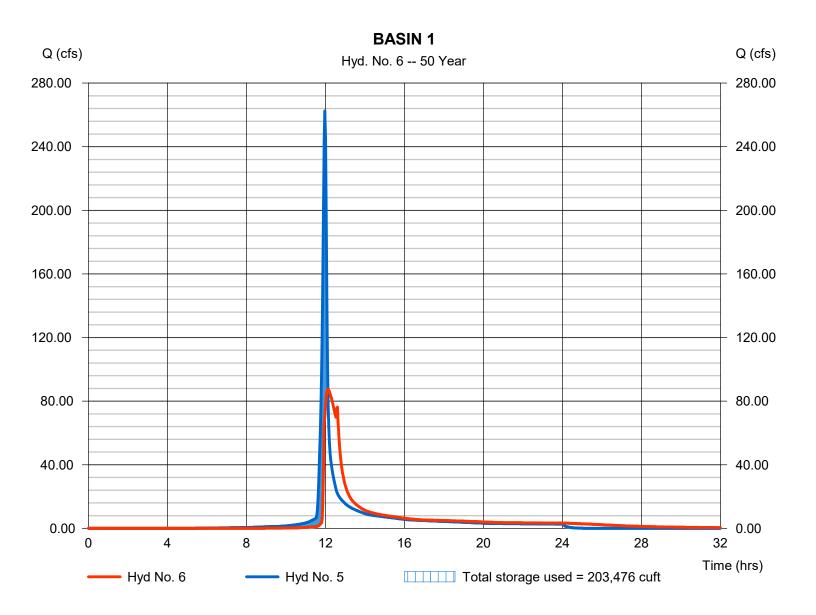


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

Storm frequency = Time interval =	E Combine 50 yrs 2 min 3, 4	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 262.41 cfs = 11.97 hrs = 569,478 cuft = 19.520 ac
innow nyus. –	- 3, 4	Contrib. drain. area	- 19.520 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

Hydrograph type	= Reservoir	Peak discharge	= 87.45 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 568,720 cuft
Inflow hyd. No.	= 5 - TO BASIN 1	Max. Elevation	= 1117.25 ft
Reservoir name	= BASIN 1	Max. Storage	= 203,476 cuft

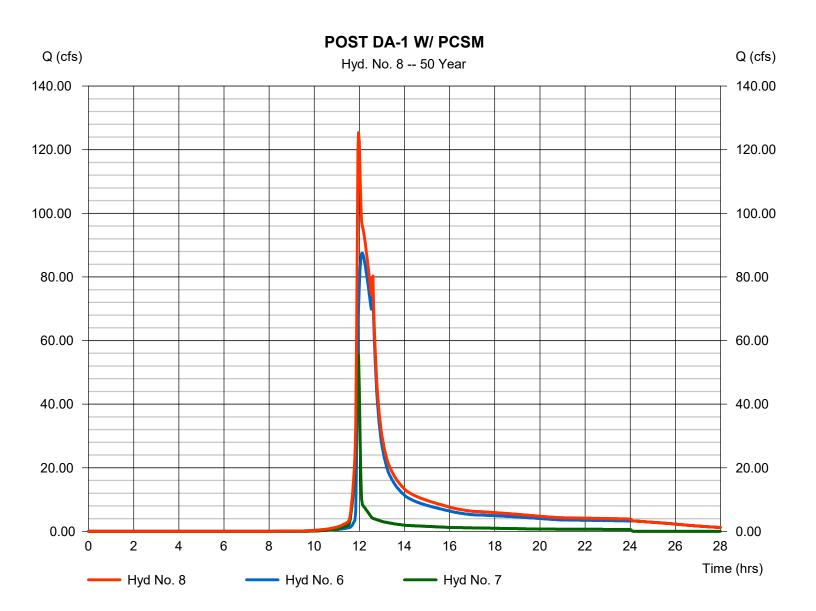
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

POST DA-1C

Hydrograph type	= SCS Runoff	Peak discharge	= 55.31 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 110,896 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

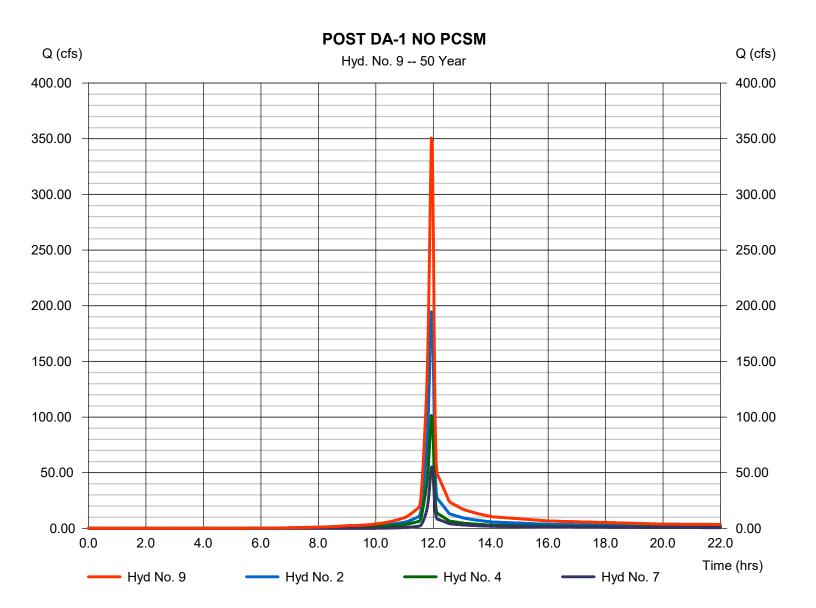


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 125.39 cfs = 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 679,616 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 17.190 ac

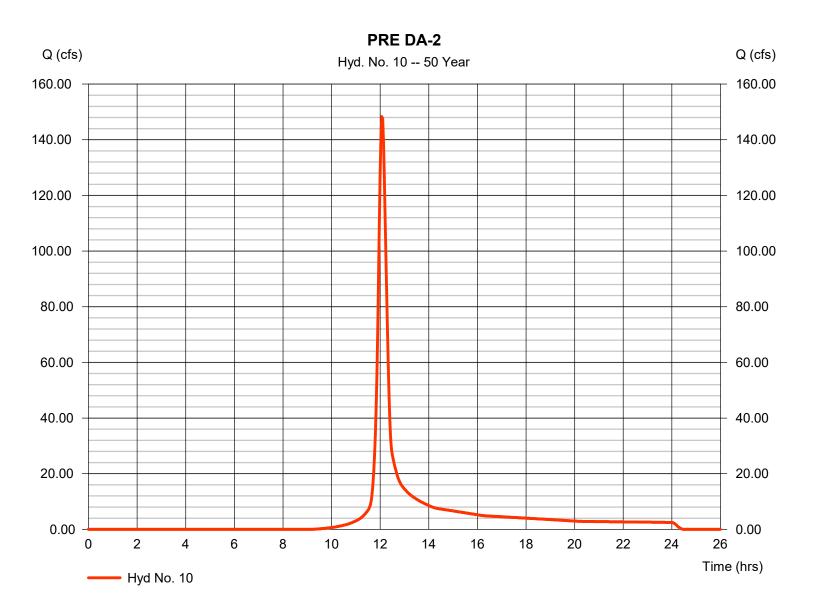


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 350.59 cfs = 11.93 hrs
Storm frequency Time interval	= 50 yrs = 2 min	Time to peak Hyd. volume	= 722,058 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac

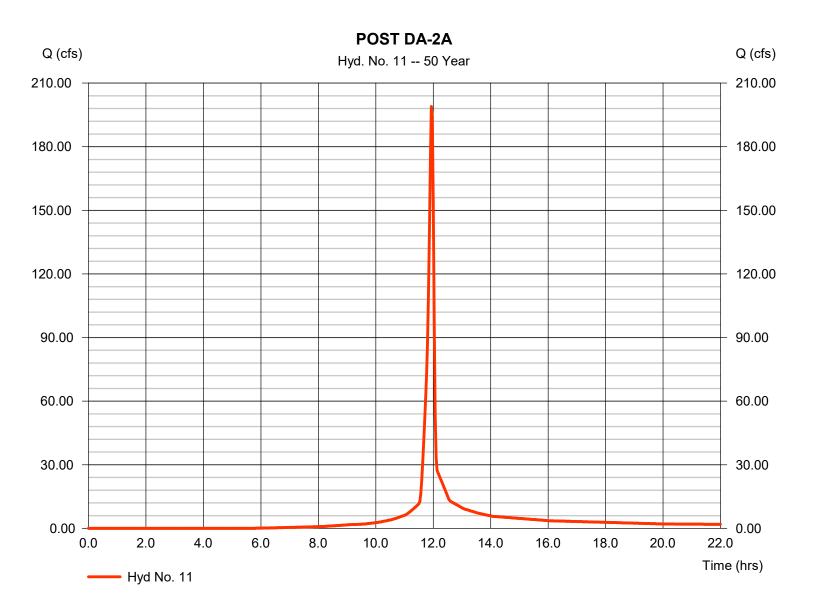

vil 3D® 2019 by Autodesk Inc. v2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 148.27 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 468,010 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



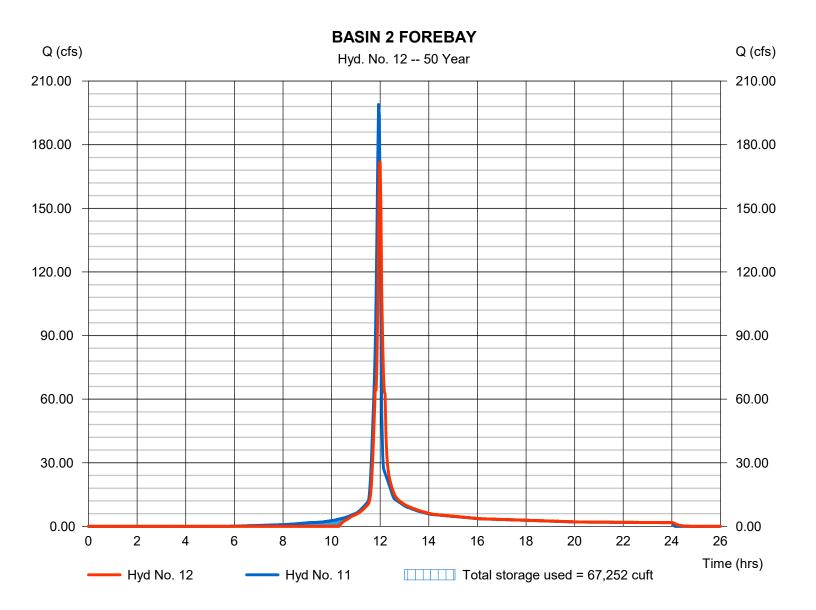
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 198.96 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 411,882 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

122

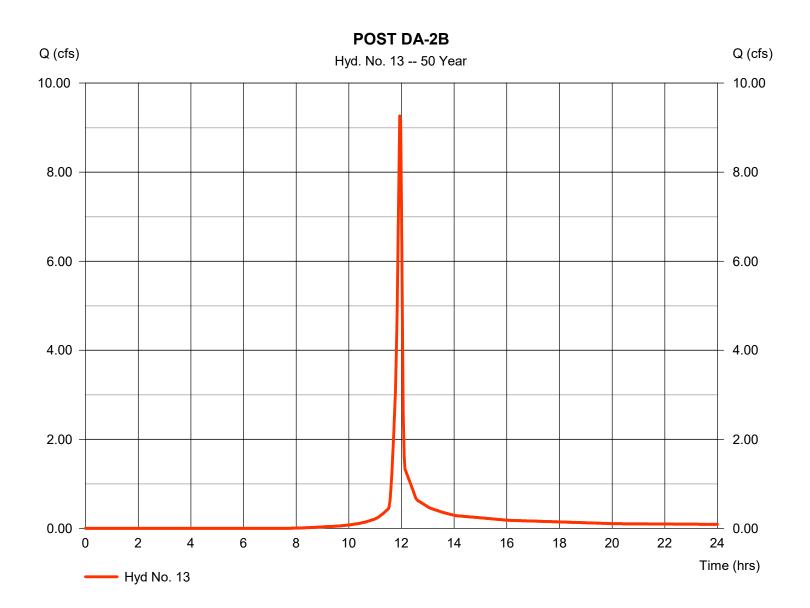

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 171.88 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 393,551 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1123.70 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 67,252 cuft

Storage Indication method used.

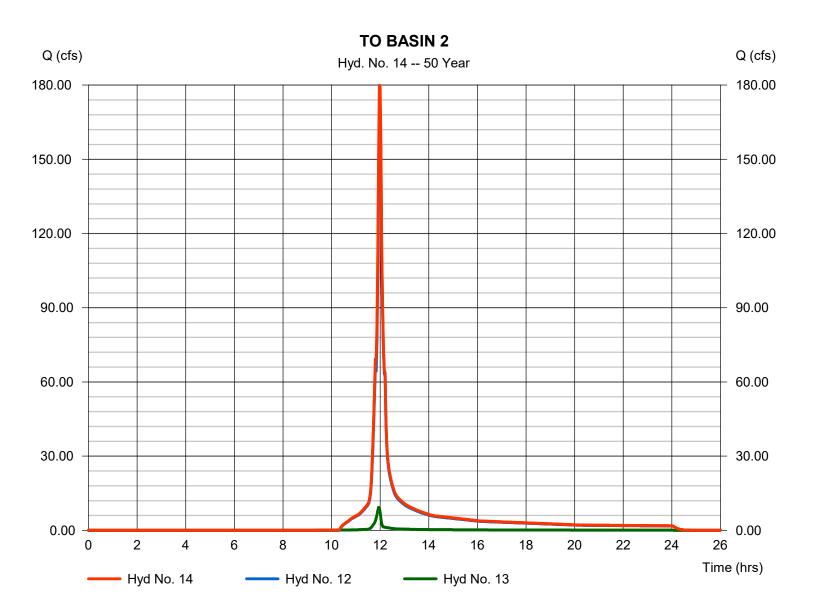


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 9.260 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 18,764 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



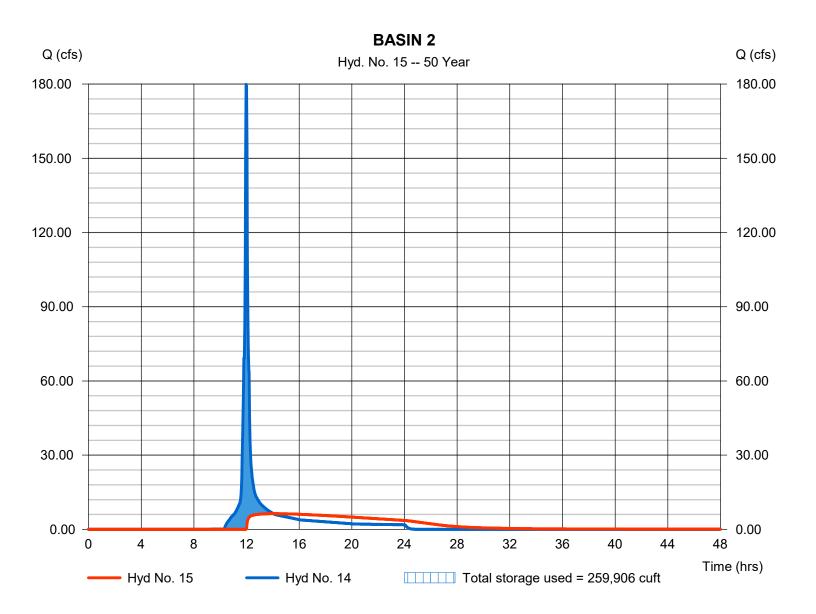
124

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

125

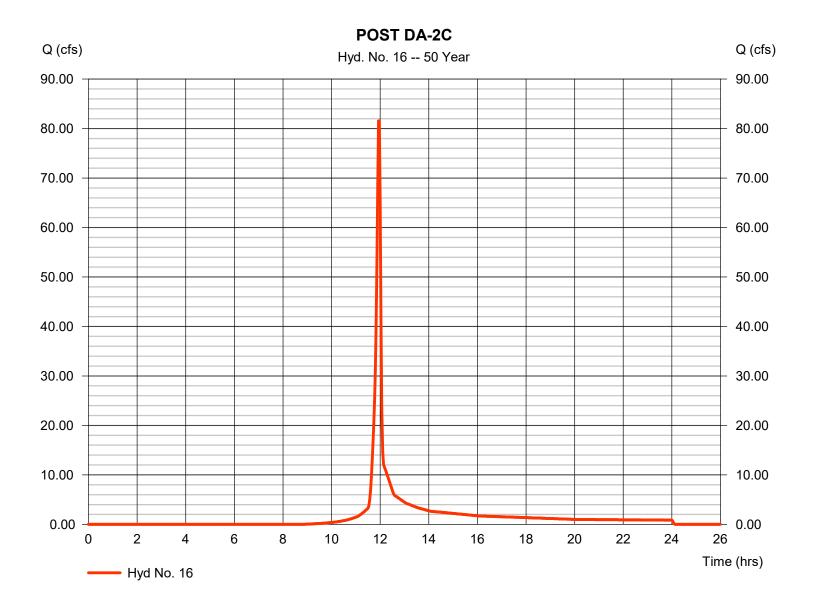

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

BASIN 2

Hydrograph type	= Reservoir	Peak discharge	= 6.335 cfs
Storm frequency	= 50 yrs	Time to peak	= 14.03 hrs
Time interval	= 2 min	Hyd. volume	= 279,991 cuft
Inflow hyd. No.	= 14 - TO BASIN 2	Max. Elevation	= 1117.68 ft
Reservoir name	= BASIN 2	Max. Storage	= 259,906 cuft

Storage Indication method used.

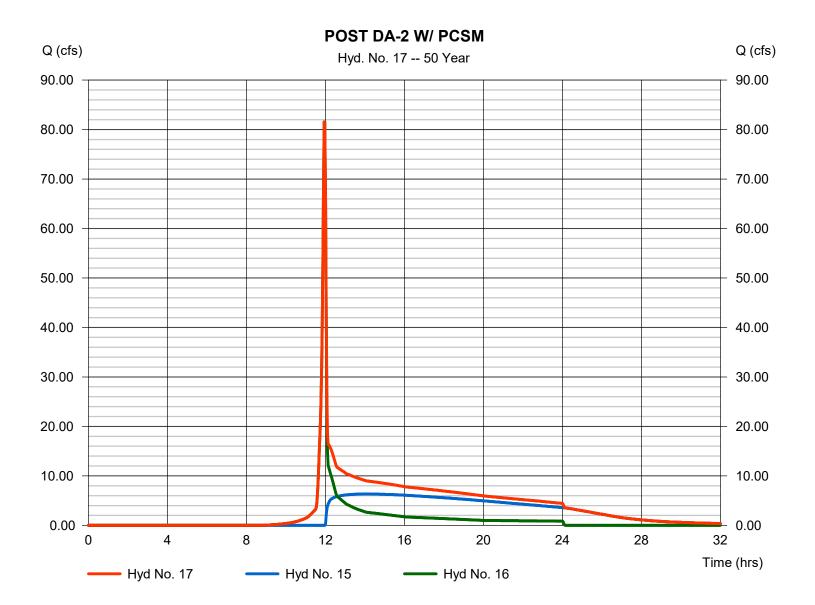


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 81.54 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 164,602 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

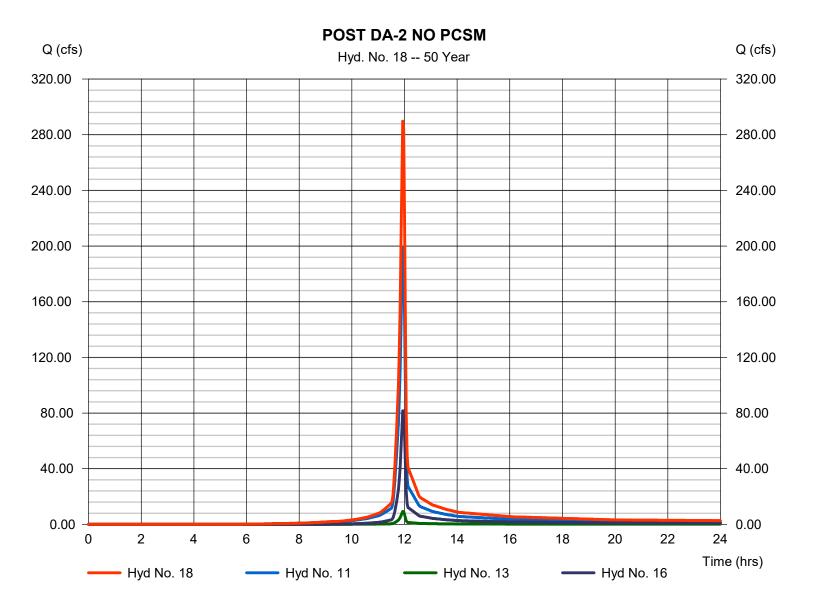


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Time interval= 2 minHyd. volume= 444,593 cuftInflow hyds.= 15, 16Contrib. drain. area= 22.710 ac	Hydrograph type	= Combine	Peak discharge	= 81.54 cfs
	Storm frequency	= 50 yrs	Time to peak	= 11.97 hrs
			5	,

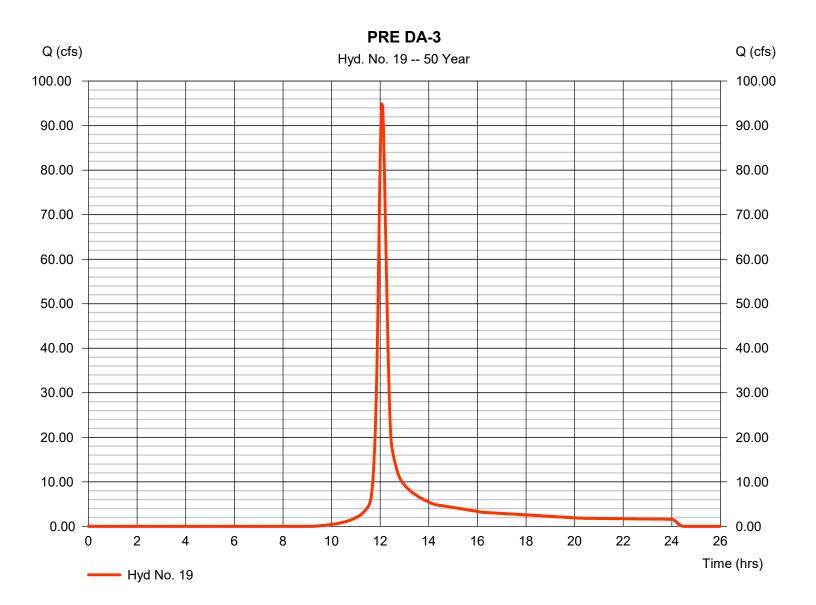

128

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 289.75 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 595,247 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac

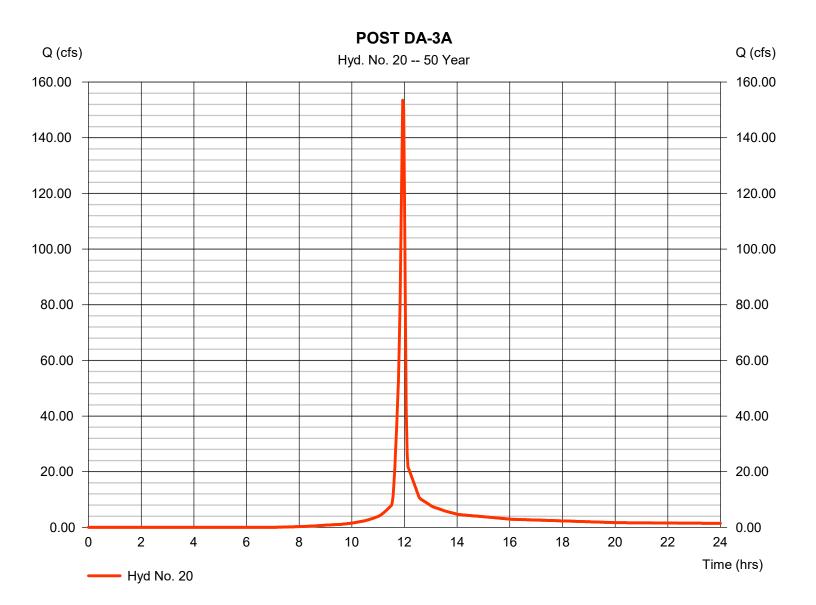


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 94.86 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 299,428 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

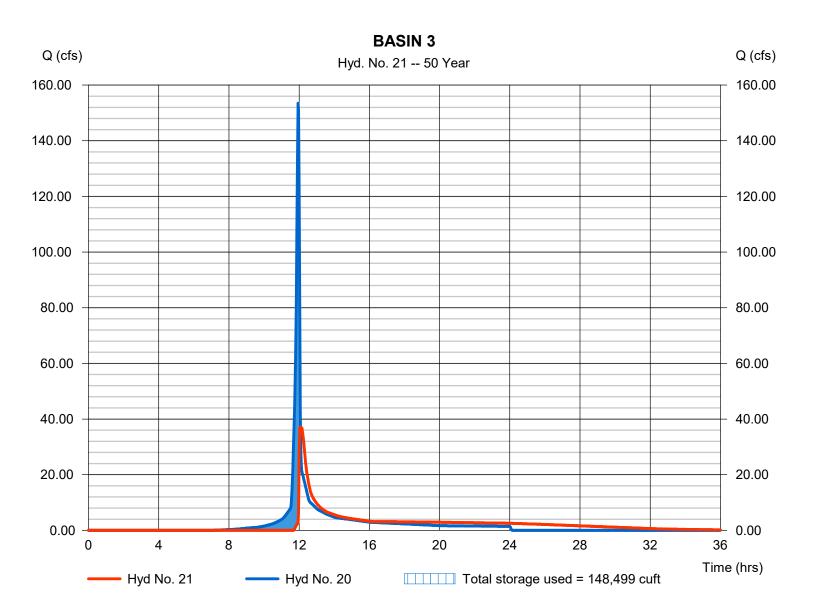


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 153.49 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 312,545 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

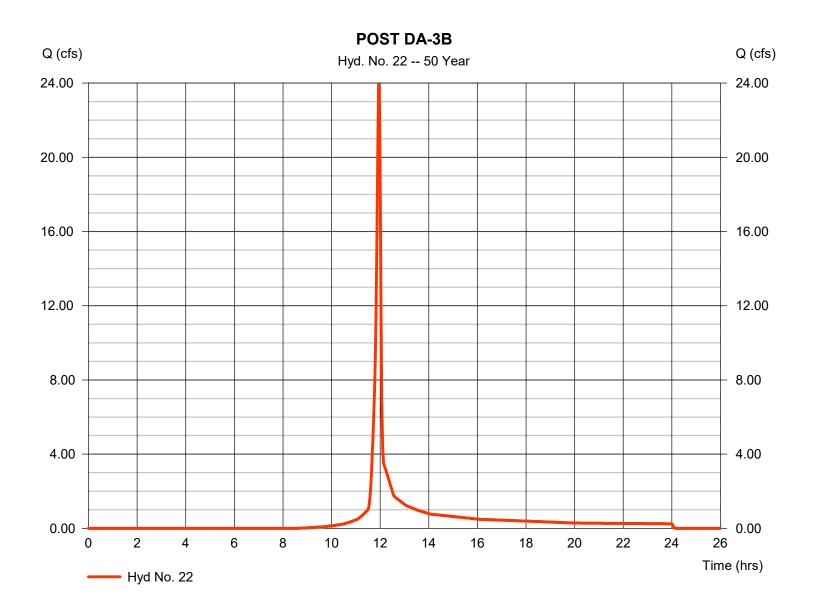

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

BASIN 3

= Reservoir	Peak discharge	= 37.08 cfs
= 50 yrs	Time to peak	= 12.07 hrs
= 2 min	Hyd. volume	= 276,952 cuft
= 20 - POST DA-3A	Max. Elevation	= 1110.95 ft
= BASIN 3	Max. Storage	= 148,499 cuft
	= 50 yrs = 2 min = 20 - POST DA-3A	= 50 yrsTime to peak= 2 minHyd. volume= 20 - POST DA-3AMax. Elevation

Storage Indication method used.

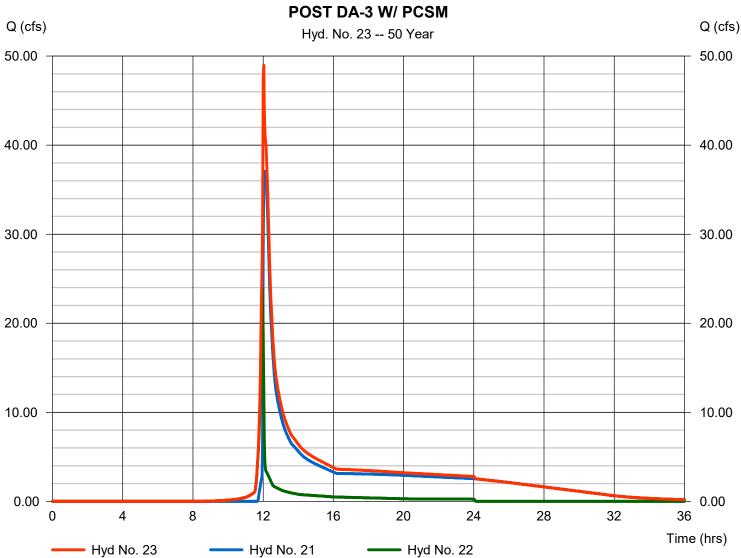


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 23.92 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 48,298 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

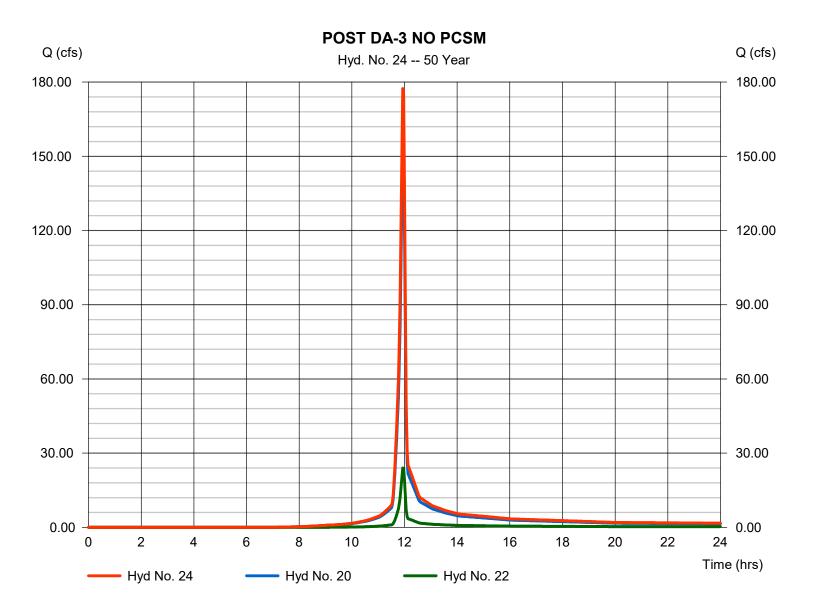


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 48.97 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	$= 2 \min$	Hyd. volume	= 325,249 cuft
Inflow hyds.	= 21, 22	Contrib. drain. area	= 6.420 ac
innow nyas.	- 21, 22	Contrib. drain. area	- 0.420 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

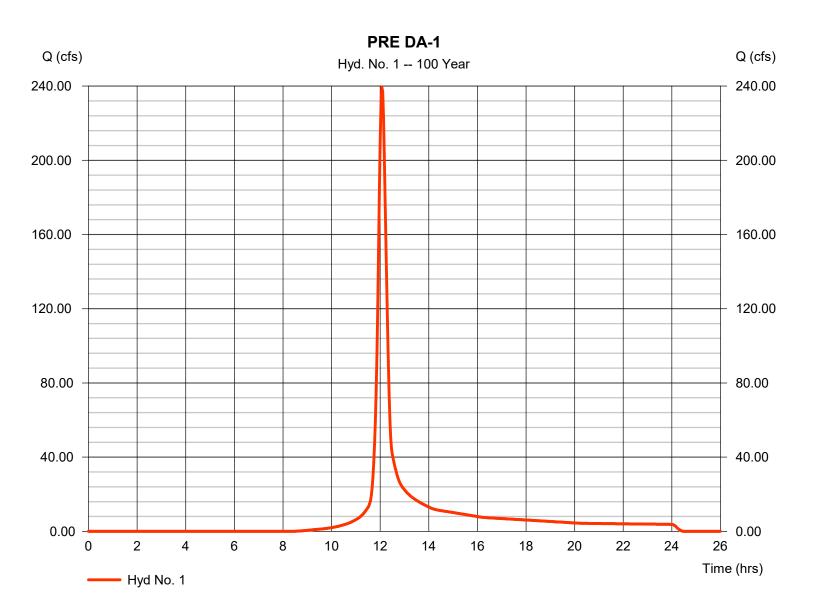
Hyd. No. 24

POST DA-3 NO PCSM

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 177.41 cfs = 11.93 hrs
Time interval	$= 2 \min$	Hyd. volume	= 360,843 cuft
Inflow hyds.	= 20, 22	Contrib. drain. area	= 41.260 ac

135

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

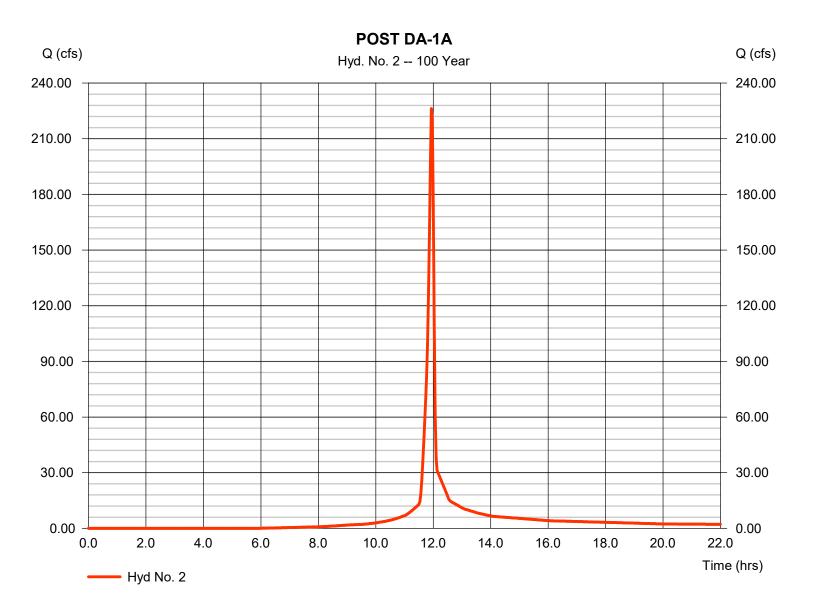

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	239.49	2	724	750,468				PRE DA-1
2	SCS Runoff	226.23	2	716	466,993				POST DA-1A
3	Reservoir	195.54	2	720	425,309	2	1119.04	95,114	BASIN 1 FOREBAY
4	SCS Runoff	116.25	2	716	245,617				POST DA-1B
5	Combine	306.36	2	718	670,926	3, 4			TO BASIN 1
6	Reservoir	98.54	2	728	670,157	5	1118.01	243,870	BASIN 1
7	SCS Runoff	66.93	2	718	134,783				POST DA-1C
8	Combine	147.52	2	718	804,941	6, 7			POST DA-1 W/ PCSM
9	Combine	409.23	2	716	847,392	2, 4, 7,			POST DA-1 NO PCSM
10	SCS Runoff	179.87	2	724	564,616				PRE DA-2
11	SCS Runoff	229.81	2	716	479,327				POST DA-2A
12	Reservoir	198.55	2	720	460,996	11	1124.09	73,187	BASIN 2 FOREBAY
13	SCS Runoff	10.94	2	716	22,252				POST DA-2B
14	Combine	208.70	2	718	483,248	12, 13			TO BASIN 2
15	Reservoir	13.94	2	770	350,911	14	1118.30	287,181	BASIN 2
16	SCS Runoff	97.93	2	716	197,869				POST DA-2C
17	Combine	98.42	2	718	548,776	15, 16			POST DA-2 W/ PCSM
18	Combine	338.67	2	716	699,448	11, 13, 16,			POST DA-2 NO PCSM
19	SCS Runoff	115.08	2	724	361,236				PRE DA-3
20	SCS Runoff	179.87	2	716	368,253				POST DA-3A
21	Reservoir	39.01	2	726	332,659	20	1111.96	174,638	BASIN 3
22	SCS Runoff	28.60	2	716	57,856				POST DA-3B
23	Combine	65.32	2	718	390,515	21, 22			POST DA-3 W/ PCSM
24	Combine	208.47	2	716	426,109	20, 22,			POST DA-3 NO PCSM
Mea	adows Landir	 ng - 2021-	- 7-28.gpv	v	Return F	Period: 100	Year	Friday, 07	/ 30 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

PRE DA-1

Hydrograph type	= SCS Runoff	Peak discharge	= 239.49 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 750,468 cuft
Drainage area	= 80.750 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



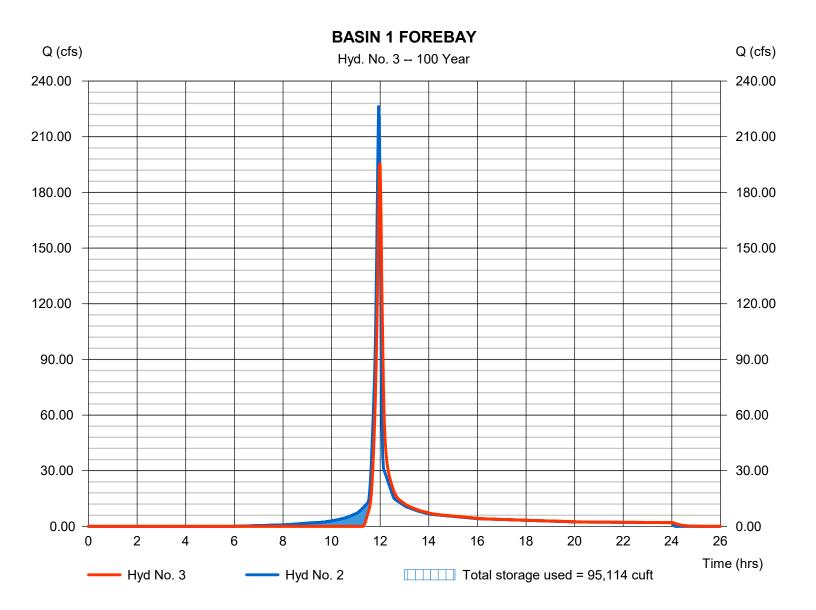
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

POST DA-1A

Hydrograph type	= SCS Runoff	Peak discharge	= 226.23 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 466,993 cuft
Drainage area	= 41.610 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

138

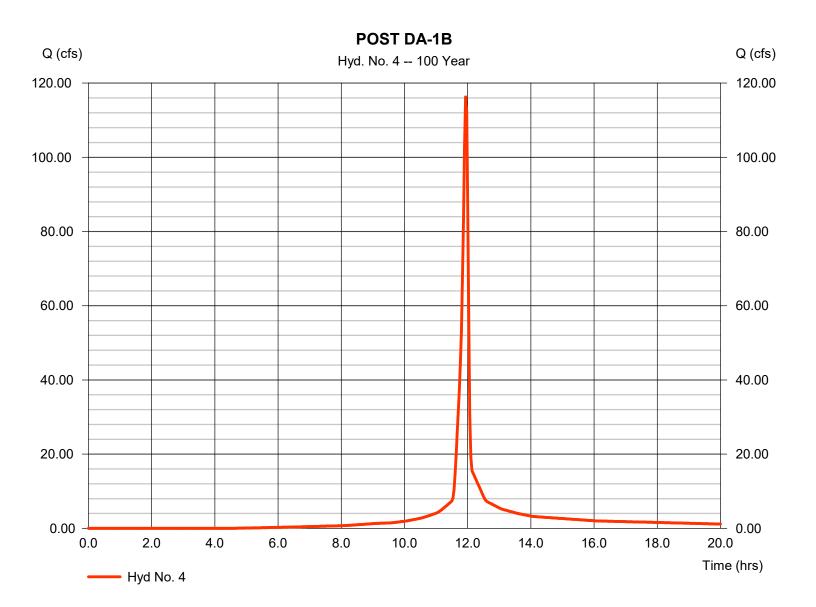

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

BASIN 1 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 195.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 425,309 cuft
Inflow hyd. No.	= 2 - POST DA-1A	Max. Elevation	= 1119.04 ft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 95,114 cuft

Storage Indication method used.

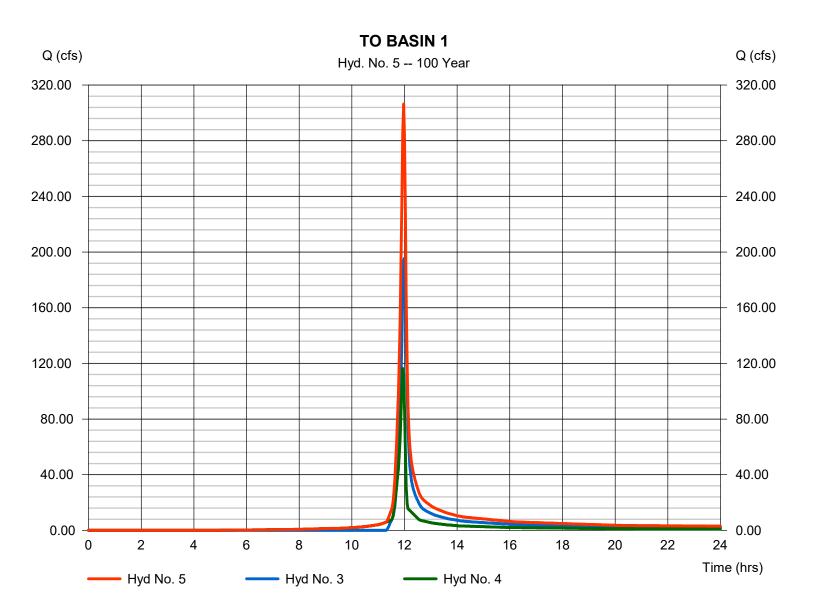


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

POST DA-1B

Hydrograph type	= SCS Runoff	Peak discharge	= 116.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 245,617 cuft
Drainage area	= 19.520 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

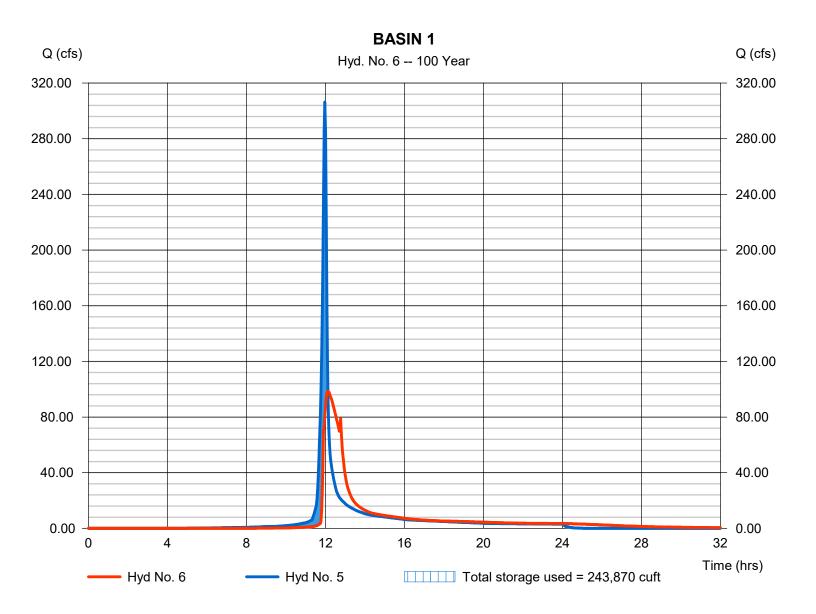


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

TO BASIN 1

Hydrograph type	= Combine	Peak discharge	= 306.36 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 670,926 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 19.520 ac
innow nyus.	- 3, +	Contrib. drain. area	- 19.520 ac

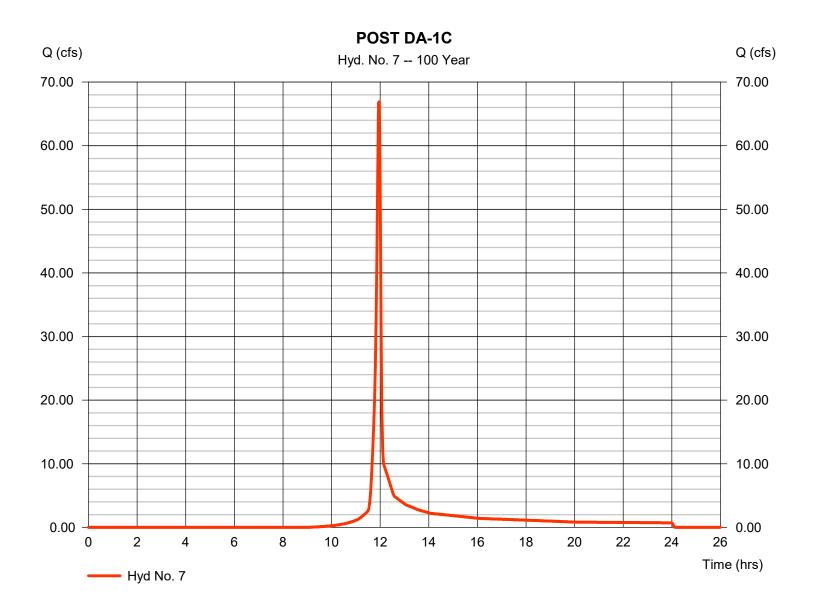

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

BASIN 1

Hydrograph type	= Reservoir	Peak discharge	= 98.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 670,157 cuft
Inflow hyd. No.	= 5 - TO BASIN 1	Max. Elevation	= 1118.01 ft
Reservoir name	= BASIN 1	Max. Storage	= 243,870 cuft

Storage Indication method used.

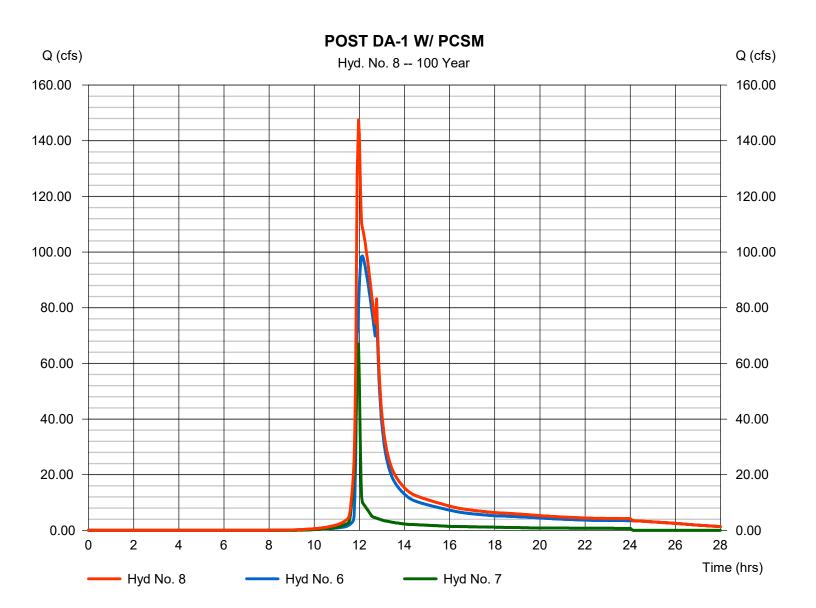


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

POST DA-1C

Hydrograph type	= SCS Runoff	Peak discharge	= 66.93 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 134,783 cuft
Drainage area	= 17.190 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

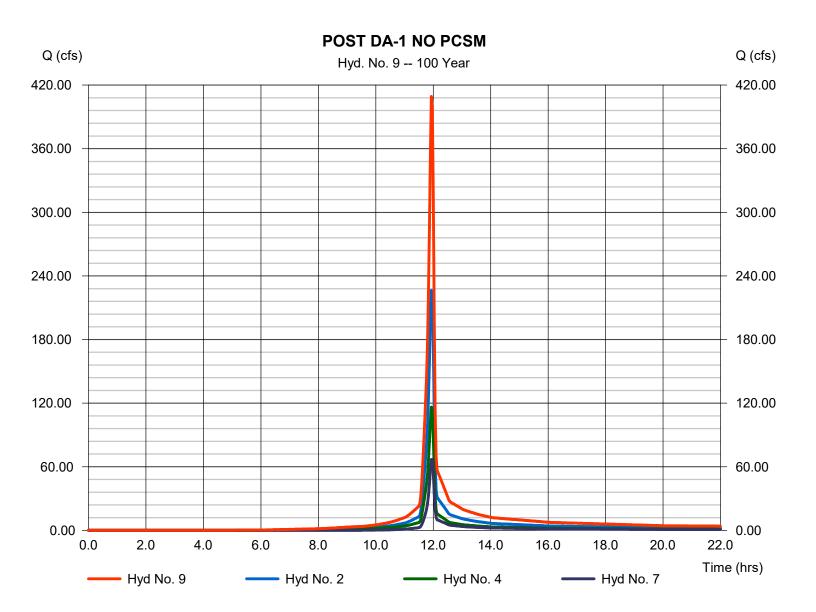


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

POST DA-1 W/ PCSM

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 147.52 cfs = 11.97 hrs
Time interval	$= 2 \min$	Hyd. volume	= 804,941 cuft
Inflow hyds.	= 6,7	Contrib. drain. area	= 17.190 ac

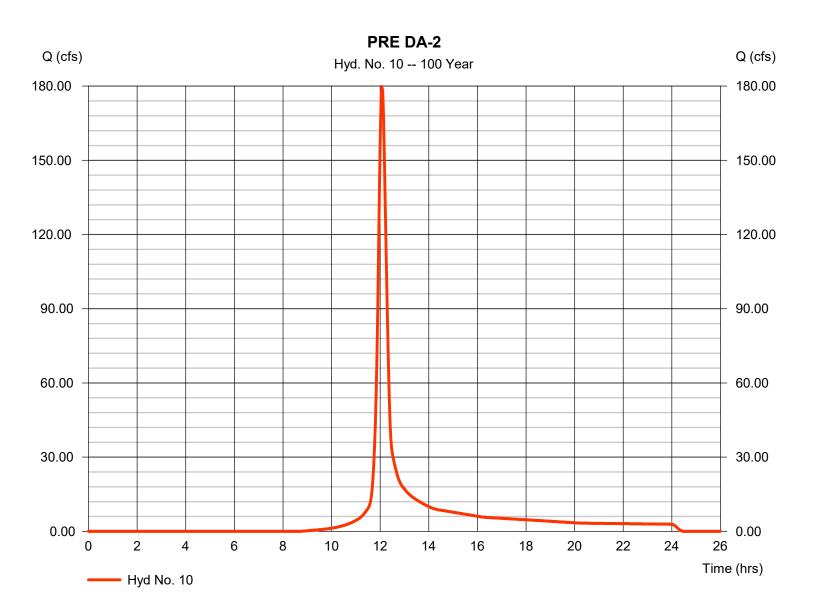


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

POST DA-1 NO PCSM

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 409.23 cfs = 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 847,392 cuft
Inflow hyds.	= 2, 4, 7	Contrib. drain. area	= 78.320 ac

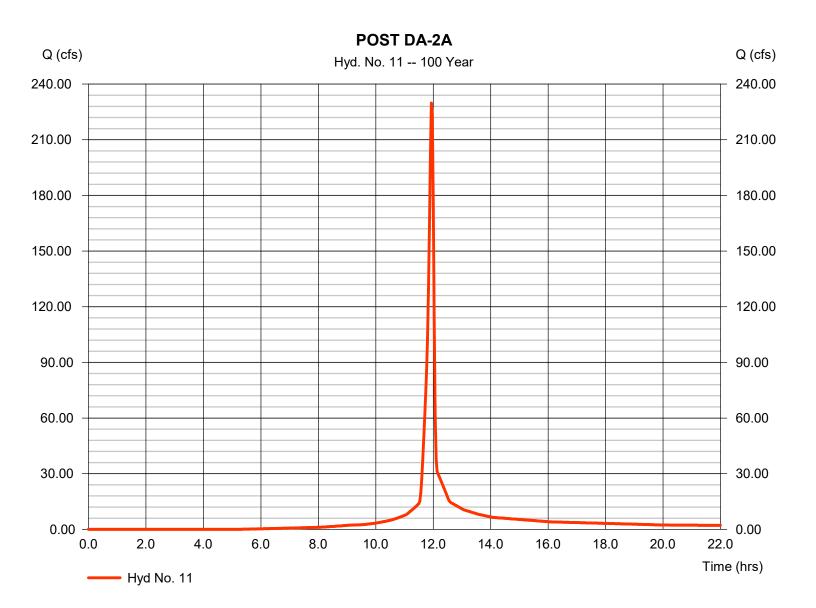


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

PRE DA-2

Hydrograph type	= SCS Runoff	Peak discharge	= 179.87 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 564,616 cuft
Drainage area	= 62.880 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


146

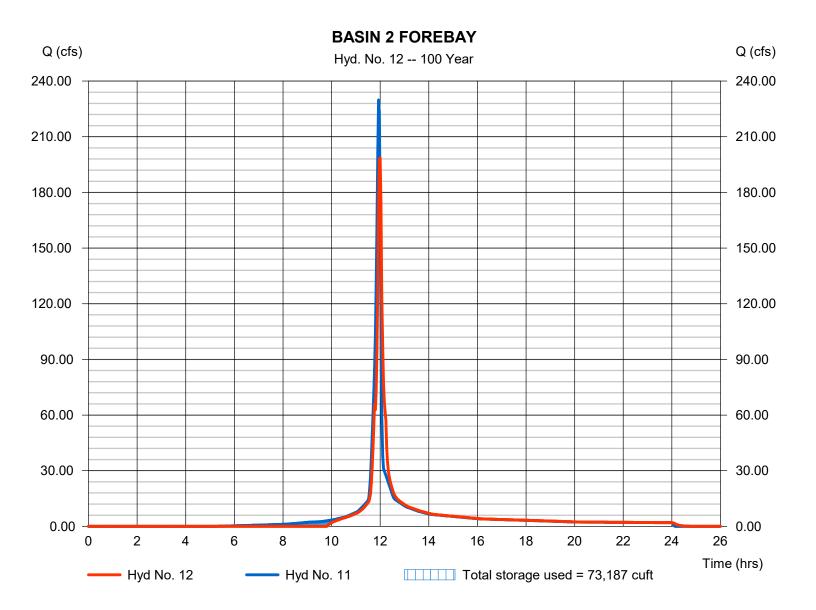
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 11

POST DA-2A

Hydrograph type	= SCS Runoff	Peak discharge	= 229.81 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 479,327 cuft
Drainage area	= 40.300 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

147

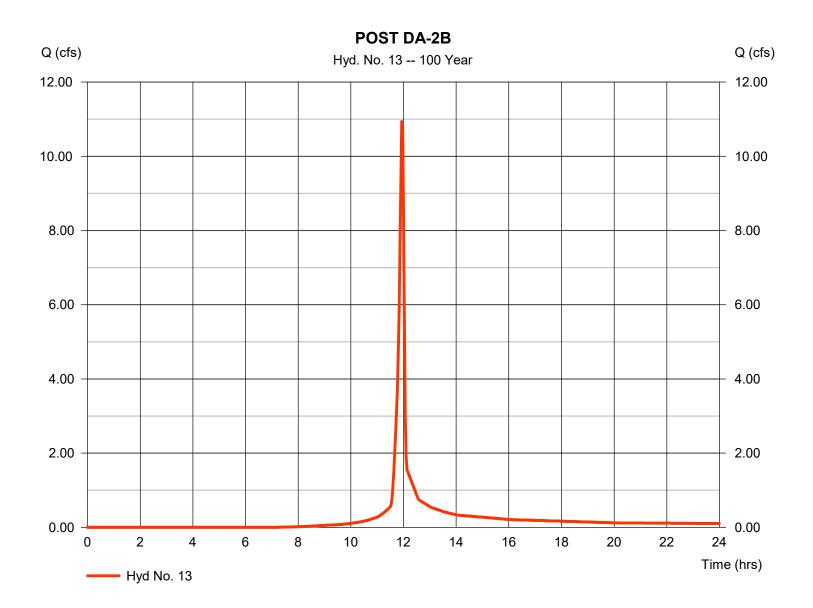

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 12

BASIN 2 FOREBAY

Hydrograph type	= Reservoir	Peak discharge	= 198.55 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 460,996 cuft
Inflow hyd. No.	= 11 - POST DA-2A	Max. Elevation	= 1124.09 ft
Reservoir name	= BASIN 2 FOREBAY	Max. Storage	= 73,187 cuft

Storage Indication method used.

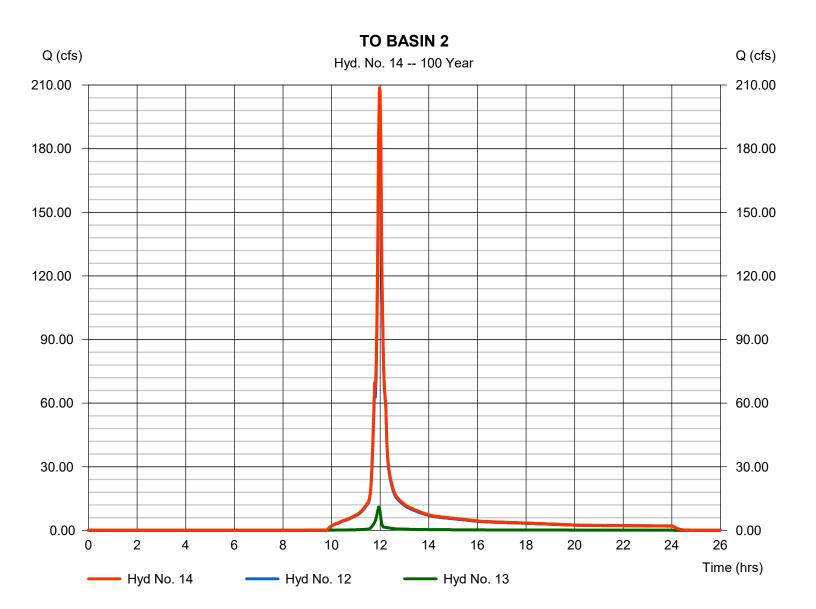


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 13

POST DA-2B

Hydrograph type	= SCS Runoff	Peak discharge	= 10.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 22,252 cuft
Drainage area	= 2.240 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

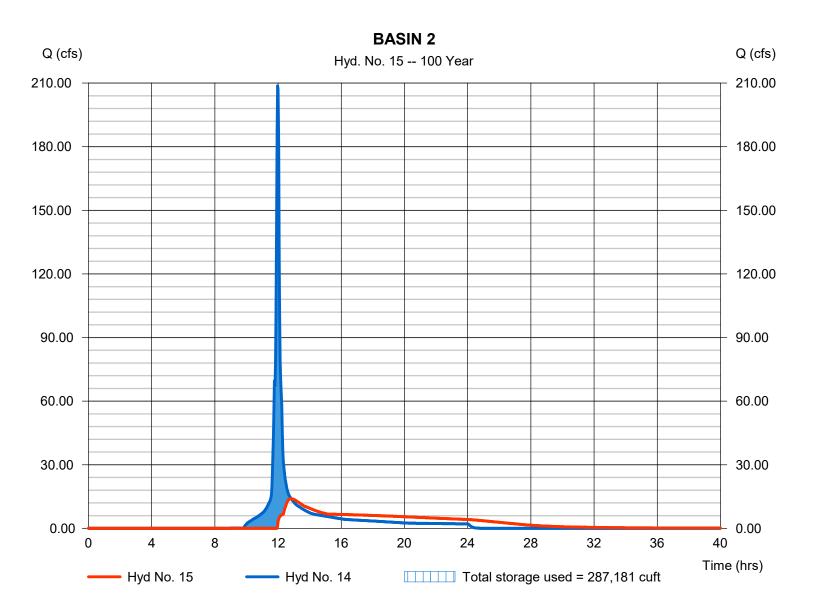

149

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 14

TO BASIN 2

Hydrograph type	= Combine	Peak discharge	= 208.70 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 483,248 cuft
Inflow hyds.	= 12, 13	Contrib. drain. area	= 2.240 ac

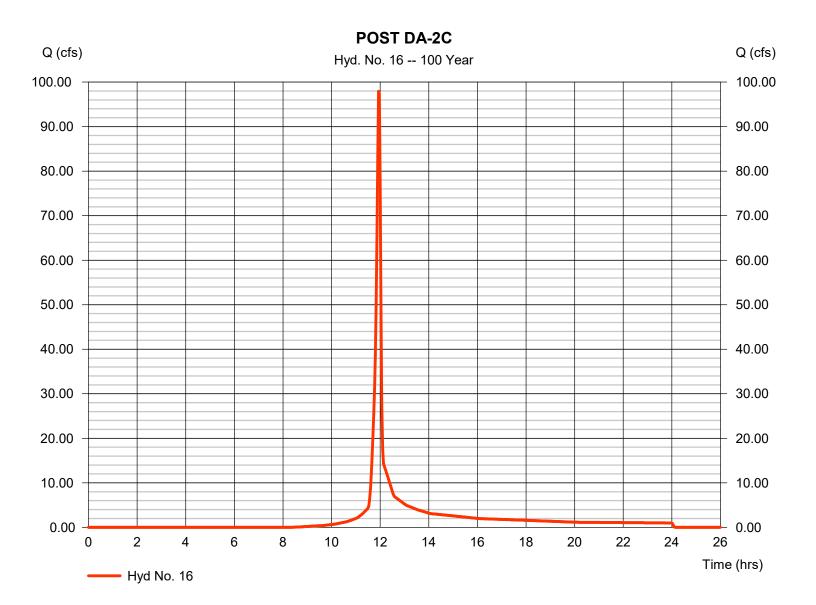

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 15

BASIN 2

Hydrograph type	= Reservoir	Peak discharge	= 13.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.83 hrs
Time interval	= 2 min	Hyd. volume	= 350,911 cuft
Inflow hyd. No.	= 14 - TO BASIN 2	Max. Elevation	= 1118.30 ft
Reservoir name	= BASIN 2	Max. Storage	= 287,181 cuft

Storage Indication method used.

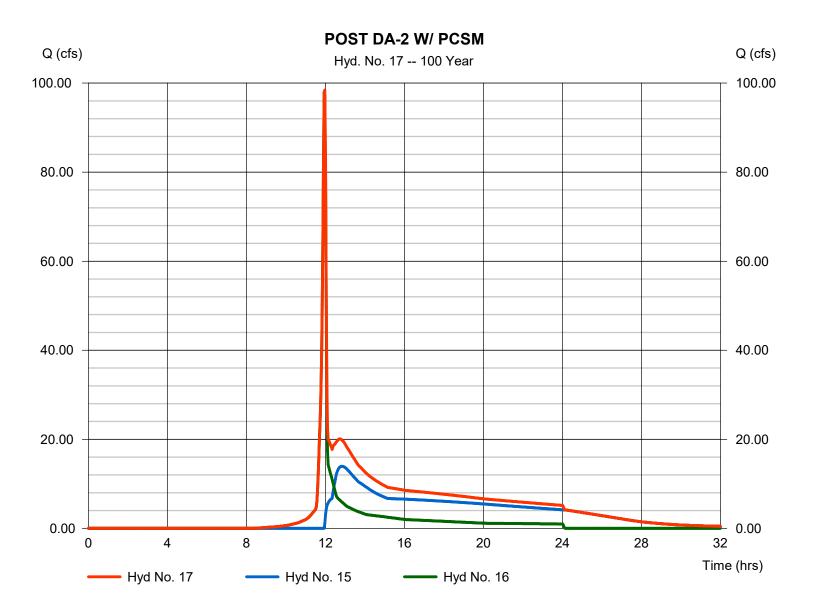

151

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 16

POST DA-2C

Hydrograph type	= SCS Runoff	Peak discharge	= 97.93 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 197,869 cuft
Drainage area	= 22.710 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

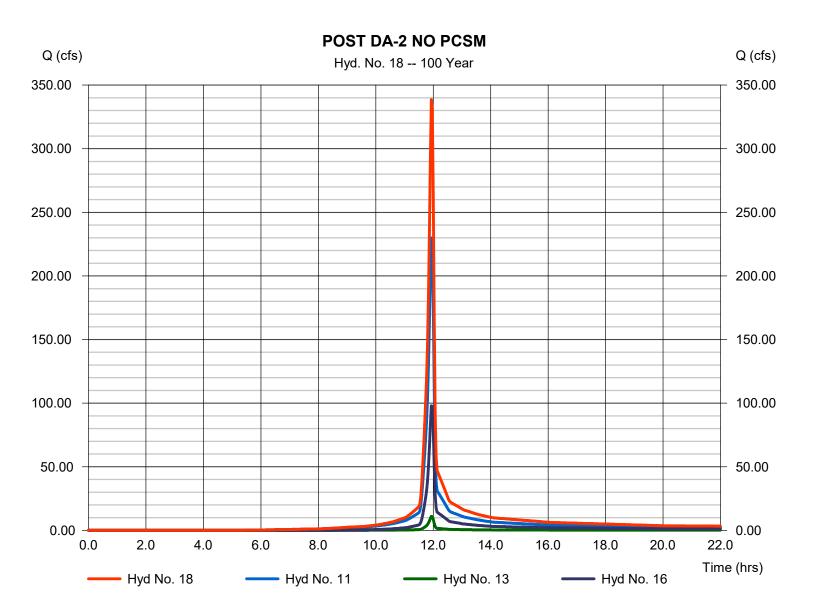


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 17

POST DA-2 W/ PCSM

Hydrograph type	= Combine	Peak discharge	= 98.42 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 548,776 cuft
Inflow hyds.	= 15, 16	Contrib. drain. area	= 22.710 ac
,			

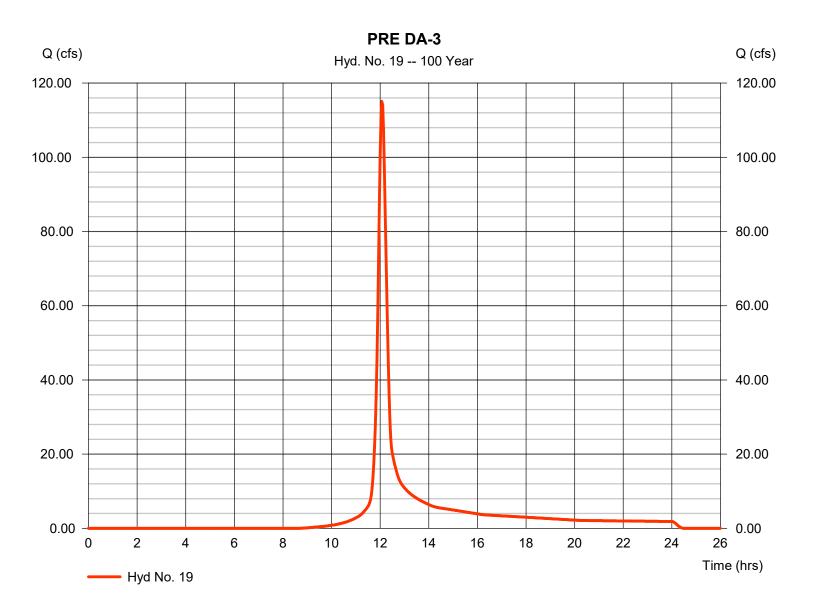


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 18

POST DA-2 NO PCSM

Hydrograph type	= Combine	Peak discharge	= 338.67 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 699,448 cuft
Inflow hyds.	= 11, 13, 16	Contrib. drain. area	= 65.250 ac

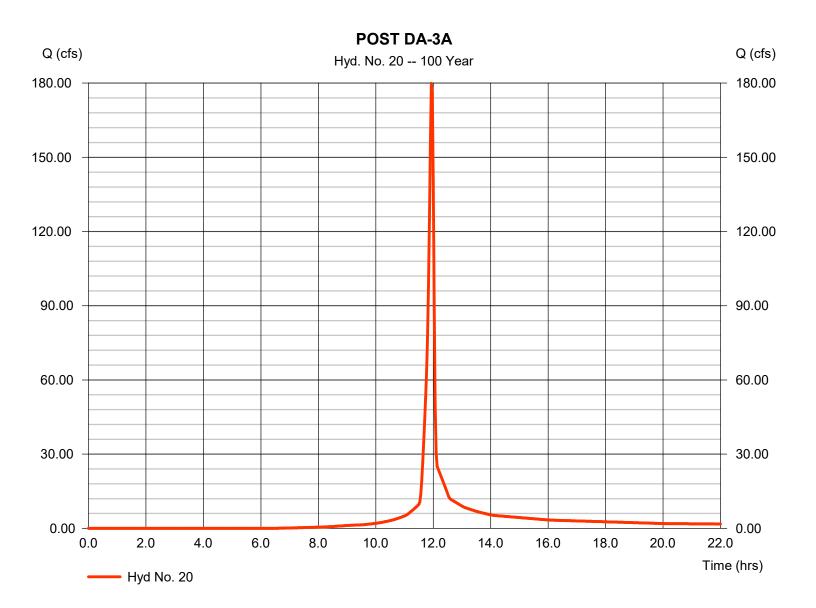


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 19

PRE DA-3

Hydrograph type	= SCS Runoff	Peak discharge	= 115.08 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 361,236 cuft
Drainage area	= 40.230 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.20 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

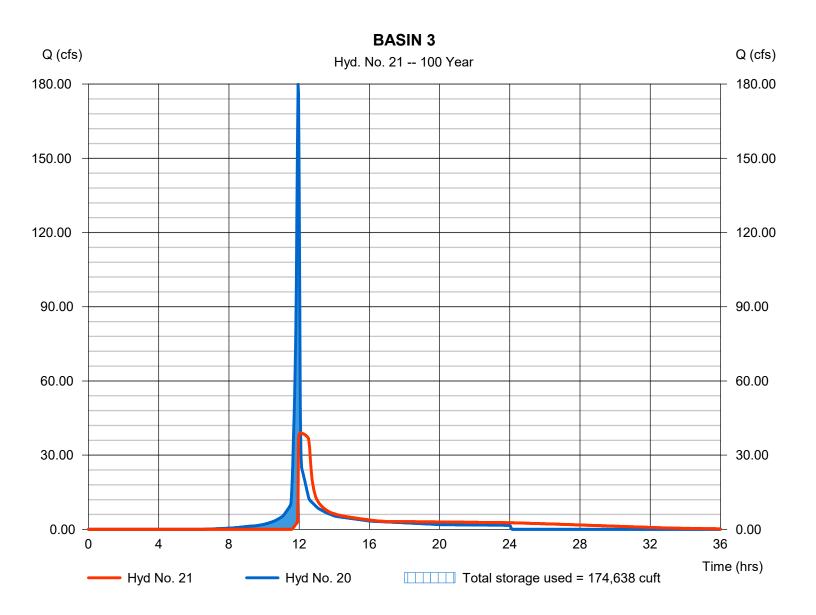


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 20

POST DA-3A

Hydrograph type	= SCS Runoff	Peak discharge	= 179.87 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 368,253 cuft
Drainage area	= 34.840 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

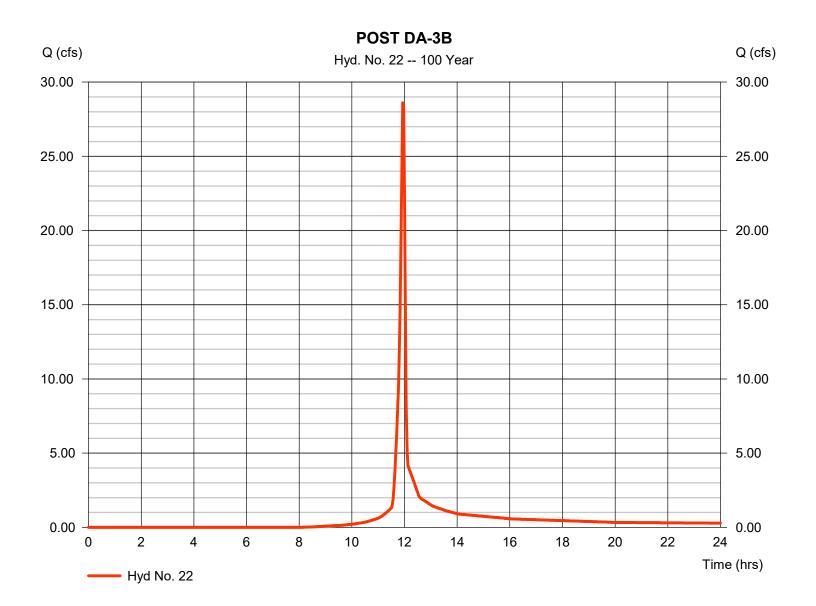

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 21

BASIN 3

Hydrograph type	= Reservoir	Peak discharge	= 39.01 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 332,659 cuft
Inflow hyd. No.	= 20 - POST DA-3A	Max. Elevation	= 1111.96 ft
Reservoir name	= BASIN 3	Max. Storage	= 174,638 cuft
Inflow hyd. No.	= 20 - POST DA-3A	Max. Elevation	= 1111.96 ft

Storage Indication method used.

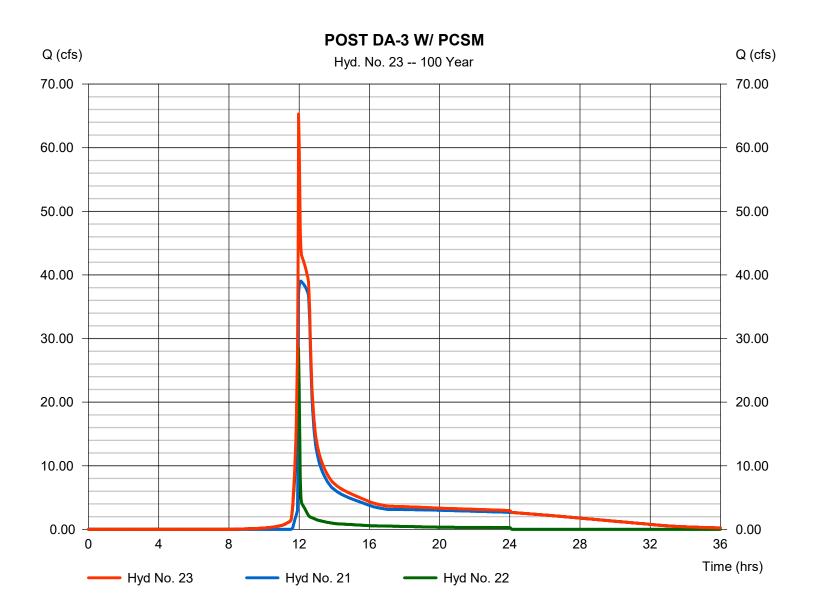

157

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 22

POST DA-3B

Hydrograph type	= SCS Runoff	Peak discharge	= 28.60 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 57,856 cuft
Drainage area	= 6.420 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.03 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

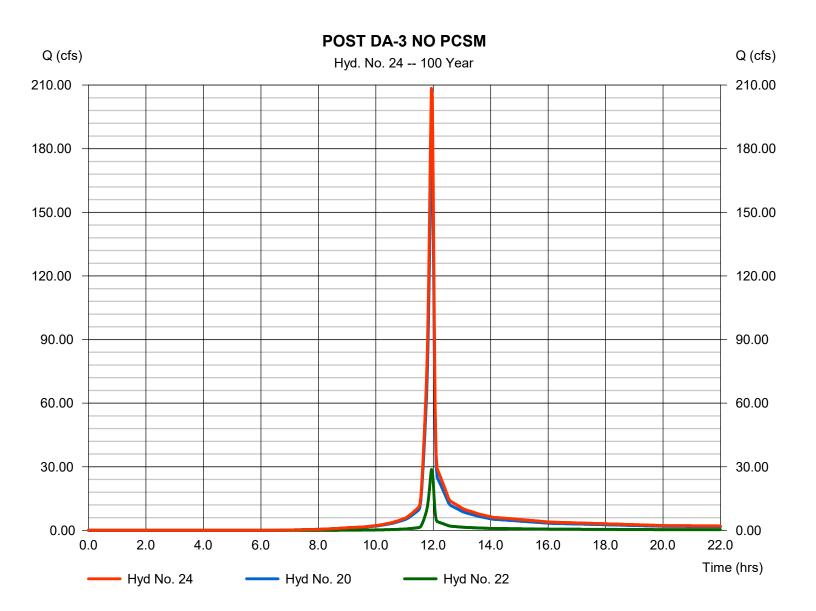


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 23

POST DA-3 W/ PCSM

	11.97 hrs
5	390,515 cuft 5.420 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 24

POST DA-3 NO PCSM

9 cuft ac

Friday, 07 / 30 / 2021

160

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

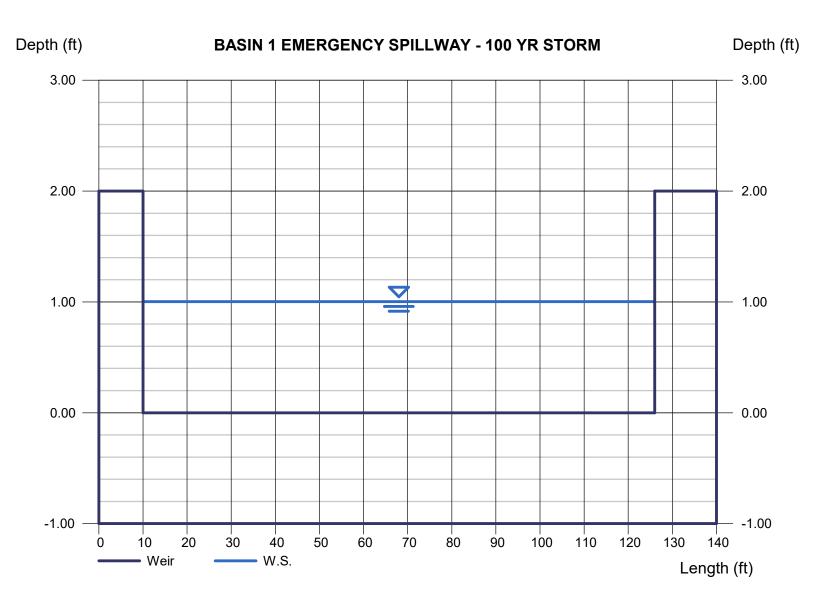
Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	Е	(N/A)				
1	39.4818	9.7000	0.8725					
2	51.9984	10.6000	0.8893					
3	0.0000	0.0000	0.0000					
5	49.1179	9.4000	0.8228					
10	47.0158	8.4000	0.7802					
25	46.9359	7.7000	0.7416					
50	43.1385	6.5000	0.6974					
100	39.8713	5.5000	0.6556					

File name: 3771 - Franz - IDF.IDF

Intensity = B / (Tc + D)^E

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	3.78	2.93	2.41	2.05	1.79	1.59	1.43	1.31	1.20	1.11	1.04	0.97
2	4.52	3.53	2.91	2.48	2.17	1.93	1.74	1.59	1.46	1.35	1.26	1.18
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	5.47	4.28	3.55	3.04	2.67	2.39	2.17	1.98	1.83	1.70	1.60	1.50
10	6.21	4.85	4.02	3.45	3.04	2.73	2.48	2.28	2.11	1.97	1.85	1.74
25	7.13	5.57	4.63	4.00	3.53	3.18	2.90	2.67	2.48	2.32	2.18	2.06
50	7.85	6.11	5.08	4.39	3.89	3.51	3.21	2.96	2.76	2.59	2.44	2.31
100	8.53	6.61	5.50	4.77	4.24	3.84	3.52	3.26	3.05	2.86	2.71	2.57

Tc = time in minutes. Values may exceed 60.


9\3789 - Fi	rydrych Apartm	nent Proj	ject\Calcs\Civil\PCSM\Site Revision - 09-01-2020\Jackson Township Precipitation.pcp	

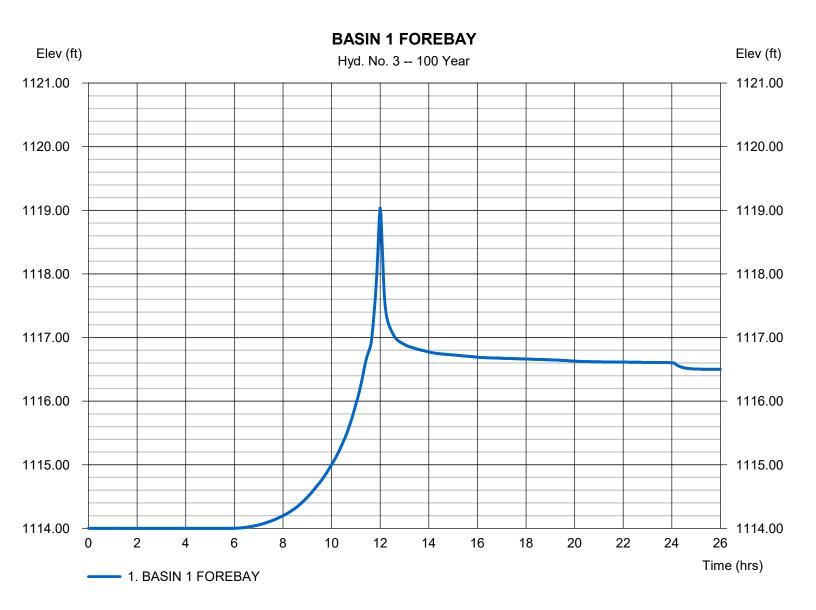
	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.02	2.41	0.00	0.00	3.38	4.00	4.50	5.03
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Friday, Jul 30 2021

BASIN 1 EMERGENCY SPILLWAY - 100 YR STORM

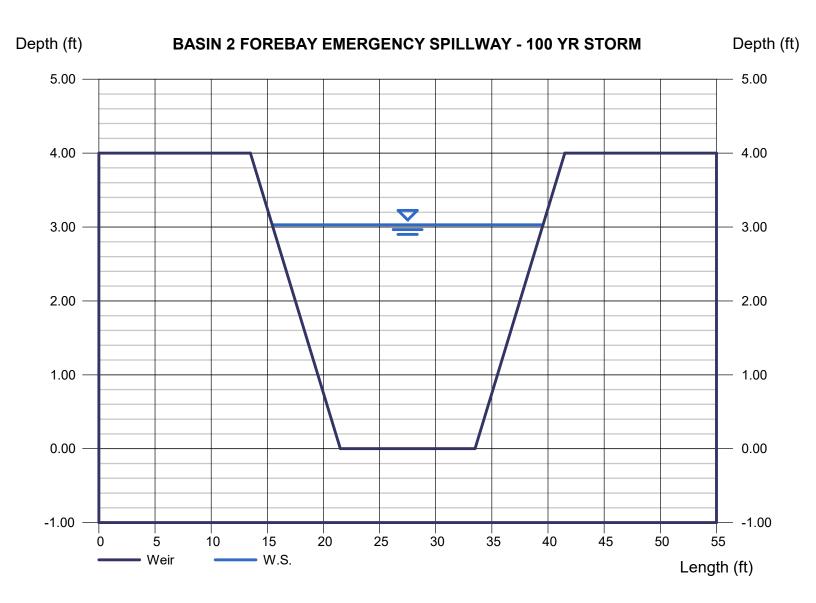
Rectangular Weir		Highlighted	
Crest	= Broad	Depth (ft)	= 1.00
Bottom Length (ft)	= 116.00	Q (cfs)	= 303.03
Total Depth (ft)	= 2.00	Area (sqft)	= 116.37
		Velocity (ft/s)	= 2.60
Calculations		Top Width (ft)	= 116.00
Weir Coeff. Cw	= 2.60		
Compute by:	Known Q		
Known Q (cfs)	= 303.03		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

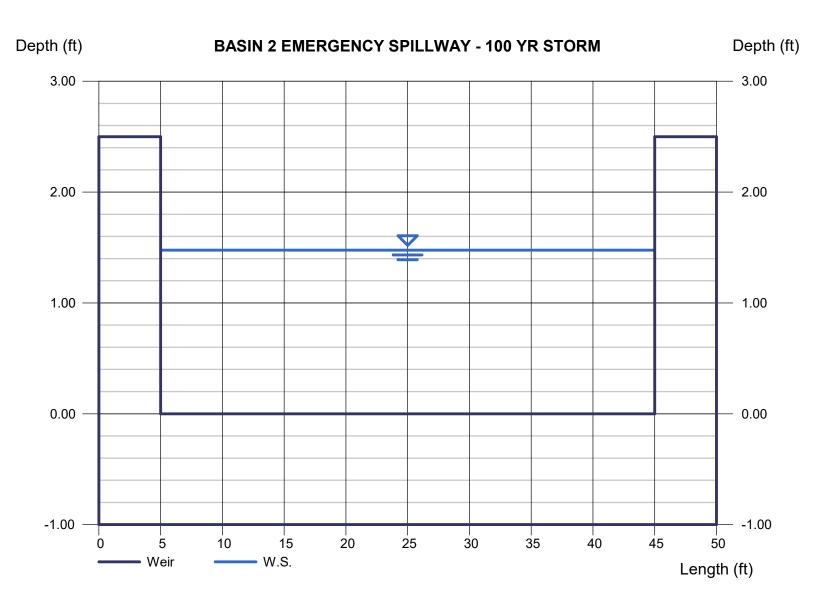

Friday, 07 / 30 / 2021

Hyd. No. 3

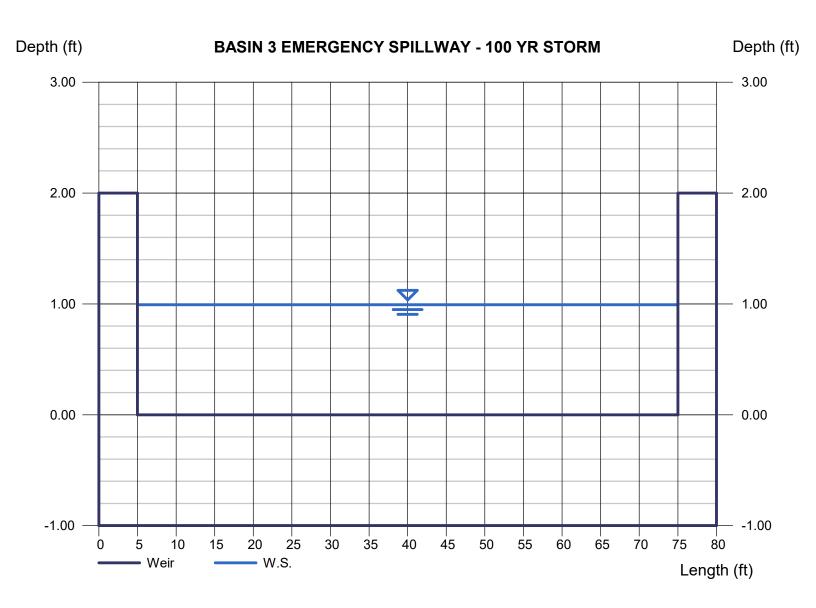
BASIN 1 FOREBAY


Hydrograph type	= Reservoir	Peak discharge	= 195.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 425,309 cuft
Inflow hyd. No.	= 2 - POST DA-1A	Max. Elevation	= 1119.04 ft
Reservoir name	= BASIN 1 FOREBAY	Max. Storage	= 95,114 cuft

Storage Indication method used.


BASIN 2 FOREBAY EMERGENCY SPILLWAY - 100 YR STORM

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 3.03
Bottom Length (ft)	= 12.00	Q (cfs)	= 229.81
Total Depth (ft)	= 4.00	Area (sqft)	= 54.72
Side Slope (z:1)	= 2.00	Velocity (ft/s)	= 4.20
		Top Width (ft)	= 24.12
Calculations			
Weir Coeff. Cw	= 2.60		
Compute by:	Known Q		
Known Q (cfs)	= 229.81		


BASIN 2 EMERGENCY SPILLWAY - 100 YR STORM

Rectangular Weir		Highlighted	
Crest	= Broad	Depth (ft) =	1.48
Bottom Length (ft)	= 40.00	Q (cfs) =	186.55
Total Depth (ft)	= 2.50	Area (sqft) =	59.06
		Velocity (ft/s) =	3.16
Calculations		Top Width (ft) =	40.00
Weir Coeff. Cw	= 2.60		
Compute by:	Known Q		
Known Q (cfs)	= 186.55		

BASIN 3 EMERGENCY SPILLWAY - 100 YR STORM

Rectangular Weir		Highlighted	
Crest	= Broad	Depth (ft)	= 0.99
Bottom Length (ft)	= 70.00	Q (cfs)	= 179.87
Total Depth (ft)	= 2.00	Area (sqft)	= 69.45
		Velocity (ft/s)	= 2.59
Calculations		Top Width (ft)	= 70.00
Weir Coeff. Cw	= 2.60		
Compute by:	Known Q		
Known Q (cfs)	= 179.87		

APPENDIX E

PA DEP BMP WORKSHEETS

Volume Management

Instructions General Volume Rate Quality						
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 2.41 inches	Alternative 2-Ye	Alternative 2-Year / 24-Hour Storm Event	m Event		inches	
	Alternative Source:	ce:				
Pre-Construction Conditions:	🔲 Exempt from Meadow in Good Condition 🗹 Automatically Calculate CN, la, Runoff and Volume	Good Condition	ব Automa	tically Calcu	late CN, Ia, Runo	ff and Volume
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Pervious as Meadow	0.07	A	30	4.667	0.00	0
Pervious as Meadow	1.83	В	58	1.448	0.11	749
Pervious as Meadow	14.46	С	71	0.817	0.45	23,464
Pervious as Meadow	47.18	D	78	0.564	0.73	125,054
Forested (Good Condition)	17.89	D	77	0.597	0.68	44,454
TOTAL (ACRES):	81.43				TOTAL (CF):	193,721
Post-Construction Conditions: No. Rows: 7						
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	20.37	N/A	98	0.041	2.18	161,291
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	35.01	D	80	0.500	0.83	105,130
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	0.07	A	30	4.667	00.0	0

Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	1.59	ß	58	1.448	0.11	651
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	10.62	C	11	0.817	0.45	17,233
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	9.51	D	78	0.564	0.73	25,207
Woods (Good Condition)	0.48	D	<i>11</i>	0.597	0.68	1,193
TOTAL (ACRES):	77.65				TOTAL (CF):	310,704

Non-Structural BMP Volume Credits:

116,984

JET CHANGE IN VOLUME TO MANAGE (CF):

Tree Planting Credit

□ Other (attach calculations):

No. Structural BMPs: **Structural BMP Volume Credits:**

7

Start BMP Numbering at:

٦

DP No.	BMP No.	BMP Name	WBC3	Discharge	Incrementa I BMP DA (acres)	Volume Routed to BMP (CF)	Volume Infiltration Routed to / Vegetated BMP (CF) Area (SF)	Infiltration Rate (in/hr)	IncrementaVolumeInfiltrationInfiltrationInfiltrationMediaI BMP DARouted to/ VegetatedRate (in/hr)Period (hrs)ted?Depth (ft)(acres)BMP (CF)Area (SF)Area (SF)Rate (in/hr)Period (hrs)ted?Depth (ft)	Vegeta- ted?	Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF) (CF)	ET Credit (CF)
001	Ч	Infiltration Basin	I	Off-Site	19.52	203,322	41,195	0.00	72	Yes	4.8	0	0	48,050
001	2	Infiltration Basin		to BMP No. 1	40.94	145,813	14,647	0.90	72	Yes	4.8	41,682	53,546	17,084

118,680 TOTAL CREDITS (CF): VOLUME REQUIREMENT SATISFIED

116,984 NET CHANGE IN VOLUME TO MANAGE (CF):

118,680 INFILTRATION & ET CREDITS (CF):

65,134

53,546

Totals:

Page 2

Volume Worksheet

7/30/2021

Rate Control

Precipitation Amounts:

NOAA 2-Year 24-Hour Storm Event (in): NOAA 10-Year 24-Hour Storm Event (in): NOAA 50-Year 24-Hour Storm Event (in): NOAA 100-Year 24-Hour Storm Event (in):

Alternative 2-Year 24-Hour Storm Event (in): Alternative 10-Year 24-Hour Storm Event (in): Alternative 50-Year 24-Hour Storm Event (in): Alternative 100-Year 24-Hour Storm Event (in):

Report Summary of Peak Rates Only

Attach model input and output data or other calculations to support the rates reported below.

	Pe	Peak Discharge Rates (cfs)	fs)	
	Pre-Construction	Pre-Construction Post-Construction	Net Change	
2-Year Storm:	54.64	16.44	-38.20	Rate Control Satisfied
10-Year Storm:	116.42	61.64	-54.78	Rate Control Satisfied
50-Year Storm:	198.38	124.18	-74.20	Rate Control Satisfied
100-Year Storm:	239.49	146.60	-92.89	Rate Control Satisfied

PRINT

Instructions General Volume Rate Quality

Pre-Construction Pollutant Loads:

I and Council (fammer) (and the little defined)	Land Cover for Water	Area	Soil	Runoff	Polluta	Pollutant Conc. (mg/L)	(mg/L)		Pollutant Loads (lbs)	ls (Ibs)
	Quality	(acres)	Group	volume (cf)	TSS	ТР	ΤN	TSS	ТР	TN
Pervious as Meadow	Grassland/Herbaceous	0.07	A	0	48.8	0.22	2.30	0.00	0.00	0.00
Pervious as Meadow	Grassland/Herbaceous	1.83	В	749	48.8	0.22	2.30	2.28	0.01	0.11
Pervious as Meadow	Grassland/Herbaceous	14.46	С	23,464	48.8	0.22	2.30	71.50	0.32	3.37
Pervious as Meadow	Grassland/Herbaceous	47.18	D	125,054	48.8	0.22	2.30	381.06	1.72	17.96
Forested (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	17.89	D	44,454	45.0	45.0 0.13		1.05 124.91	0.36	2.91
	TOTAL (ACRES):	81.43				10	TOTALS:	579.76 2.41	2.41	24.35

Post-Construction Pollutant Loads (without BMPs):

s)	7	
ads (lb	TN	
ant Lo	ТР	
Pollutan	TSS	
(mg/L)	TN	
nt Conc.	ТР	
Polluta	TSS	
Volumo	(cf)	
a Soil s) Group		
Area (acres)		
Land Cover for Water	Quality	
from Volume Worksheet) Land Cover Qual		

Quality Worksheet

ΞŌ	Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Resi	Residential	20.37	N/A	161,291	65.0	0.29	2.05	654.64	2.92	20.65
ΟŪΛ	Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Oper	Open Space	35.01	۵	105,130	78.0	0.25	1.25	512.04	1.64	8.21
2 0	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland	Grassland/Herbaceous	0.07	۲	0	48.8	0.22	2.30	0.00	0.00	0.00
2 0	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland	Grassland/Herbaceous	1.59	В	651	48.8	0.22	2.30	1.98	0.01	0.09
2 0	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland	Grassland/Herbaceous	10.62	С	17,233	48.8	0.22	2.30	52.51	0.24	2.47
2 0	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland	Grassland/Herbaceous	9.51	D	25,207	48.8	0.22	2.30	76.81	0.35	3.62
5	Woods (Good Condition)	Deciduous Fo Forest/N	duous Forest/Evergreen Forest/Mixed Forest	0.48	۵	1,193	45.0	0.13	1.05	3.35	0.01	0.08
		Ĕ	TOTAL (ACRES):	77.65				10	TOTALS:	######	5.16	35.12
			D	ILUTANT	. LOAD R	POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS):	requiri	EMENTS	(LBS):	721.58	2.75	10.77
Σ	Characterize Undetained Areas (for Untreated Stormwa	d Stormwater)		No. Rows:	ъ С							
	Land Cover		Area (acres)	Soil Group	dno.	CN	la (in)		Q Runoff (in)		Runoff Volume (cf)	ime (cf)
	Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	:meteries,	1.37	۵		80	0.500		0.83		4,114	-
	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	ı Grazing	0.07	A		30	4.667		0.00		0	

7/30/2021

Quality Worksheet

Page 2

651

0.11

1.448

58

ß

1.59

Meadow-Continuous Grass, Protected from Grazing

and Generally Mowed for Hay

12,965	15,585
0.45	0.73
0.817	0.564
71	78
С	D
7.99	5.88
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay

Non-Structural BMP Water Quality Credits:

Pervious Undetained Area Credit

Other (attach calculations)

NS BMP 5.9.1 - Street Sweeping Description:

ТР 0.53
TSS 175.40

Structural BMP Water Quality Credits:

☑ Use default BMP Outflows and Median BMP Outflow Concentrations

]	•			•										
	BMP		SC?	BMP	Vol. Routed Inf. & ET	Inf. & ET	Capture &	Outflow	Outflo	w Conc.	(mg/L)	Outflow Conc. (mg/L) Pollutant Loads (lbs)	ant Load	s (lbs)
	No.				to BMP (CF)	to BMP (CF) Credits (CF)	Ū	(CF)	TSS	ТР	TN	TN TSS TP	ТР	TN
001	τ	Infiltration Basin	ı	19.52	203,322	48,050		155,272 10.00 0.24 1.04 96.96 2.33 10.08	10.00	0.24	1.04	96.96	2.33	10.08
001	2	Infiltration Basin	I	40.94	145,813	70,630		75,183	I	I	I	I	I	I

	TSS	ТР	LΝ
OUTFLOWS (LBS):	96.96	2.33	10.08
RMWATER (LBS):	109.02	0.47	4.51
TY CREDITS (LBS):	175.40	0.53	1.94
STRUCTION (LBS):	30.57	2.26	12.66
STRUCTION (LBS):	579.76 2.41	2.41	24.35
WATER QUALITY REQUIREMENT SATISFIED	EQUIREN	AENT SA	TISFIED

NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS) POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS) NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS

POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS)

POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS)

Quality Worksheet

CERTIFICATION

7/30/2021

l certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

	l
ALB	Spreadsheet User Name

Quality Worksheet

NON-STRUCTURAL BMP POLUTANT LOAD REDUCTION CALCULATION

PROJECT: Drainage Area: 2-Year Rainfall:

Meadows Landing
2.41 in

NS BMP 5.9.1 - Street Sweeping / Vacuuming

Cover Type Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Initial Runoff Volume ² (ft ³)
Impervious	D	128,937.6	2.96	98	0.20	0.04	2.18	23,437
TOTAL:			2.96					23,437

2-Year Volum	e Increase (ft3):	23.437

Event Mean	Pollutant Concentrations
	Areas: Streets and Roads - en Ditches (Including ROW)
TSS (mg/L)	141
TP (mg/L)	0.43
TN (mg/L)	2.65

F	Pollutant Loads
TSS (lbs)	206.35
TP (lbs)	0.63
TN (lbs)	3.88

From Stormwater BMP Manual - Appendix A - Table A-4:

	TSS (%)	TP (%)	TN (%)
Pollutant Removal Efficiency	85	85	50

Pollutant	Load Reduction Credits
TSS (lbs)	175.40
TP (lbs)	0.53
TN (lbs)	1.94

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P - 0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in)

Area = Land use area (sq. ft)

Pollutant Loads are calculated by the equation:

Event Mean Pollutant Concentration (mg/L) x (Runoff Volume (CF) / 43,560 CF/acre-ft) x 2.72 (conversion factor)

Note:

Runoff Volume must be calculated for EACH land use type/condition and HSG.

The use of a weighted CN value for volume calculations is not acceptable.

A minimum of 20% of existing impervious coverage MUST be designated as meadow, per PaDEP BMP Guidelines.

Volume Management

			ff and Volume	Runoff Volume (cf)	78	19,277	25,817	788	2,309	90,151	138,420	Runoff Volume (cf)	110,615
	inches		🔲 Exempt from Meadow in Good Condition 🗹 Automatically Calculate CN, Ia, Runoff and Volume	Q Runoff (in)	0.11	0.45	0.73	0.07	0.41	0.68	TOTAL (CF):	Q Runoff (in)	
			tically Calcu	la (in)	1.448	0.817	0.564	1.636	0.857	0.597		la (in)	0.041
	m Event		🗹 Automa	CN	58	71	78	55	70	77		S	98
	Alternative 2-Year / 24-Hour Storm Event	ce:	Good Condition	Soil Group	В	C	D	В	U	D		Soil Group	N/A
	Alternative 2-Yea	Alternative Source:	from Meadow in	Area (acres)	0.19	11.88	9.74	3.25	1.54	36.28	62.88	Area (acres)	13.97
Å	inches		🔲 Exempt								TOTAL (ACRES):		(Excluding ROW)
Quality	2.41		No. Rows: 6								No. Rows: 6		veways, Etc
Rate	ias 14):		No.								No.		Roofs, Dri
Volume	nt (NOAA At		S:								:50		arking Lots,
General	r Storm Eve		<u>n</u> Condition		eadow	eadow	eadow	d Condition	d Condition	d Condition	on Conditio		eas: Paved F
Instructions	2-Year / 24-Hour Storm Event (NOAA Atlas 14):		Pre-Construction Conditions:	Land Cover	Pervious as Meadow	Pervious as Meadow	Pervious as Meadow	Forested (Good Condition)	Forested (Good Condition)	Forested (Good Condition)	Post-Construction Conditions:	Land Cover	Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc.
S	2-Y		Pre	La	Pé	P	P	Ч	Ч	Ч	Pos	La La	<u> </u>

82,233

0.83

0.500

80

۵

27.39

Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition

(Grass Cover > 75%)

Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	0.03	۵	58	1.448	0.11	12
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	5.01	C	11	0.817	0.45	8,130
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	0.84	D	78	0.564	0.73	2,226
Woods (Good Condition)	15.49	D	17	0.597	0.68	38,491
TOTAL (ACRES):	62.73				TOTAL (CF):	241,708

Non-Structural BMP Volume Credits:

103,288

JET CHANGE IN VOLUME TO MANAGE (CF):

Tree Planting Credit

□ Other (attach calculations):

No. Structural BMPs: **Structural BMP Volume Credits:**

7

Start BMP Numbering at:

~

,	
ווא מו:	
שמוו הואור ואמוווהכו וווא מני	
סומו ר הוא	

DP No.	BMP No.	BMP Name	MBCS	Discharge	ncrementa I BMP DA (acres)	Volume Routed to BMP (CF)	Volume Infiltration Routed to / Vegetated BMP (CF) Area (SF)	Infiltration Rate (in/hr)	Infiltration Infiltration Infiltration Media / Vegetated Rate (in/hr) Period (hrs) ted? Depth (ft) Area (SF) Rate (in/hr) Period (hrs) ted? Depth (ft)	Vegeta- ted?	Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF) ET Credit	ET Credit (CF)
	з	Infiltration Basin	I.	Off-Site	2.24	148,488	25,324	0.40	72	Yes	3.0	118,213	54,700	19,221
002	4	Infiltration Basin	-	to BMP No. 1	40.30	160,512	7,830	0.60	72	Yes	3.5	18,330	22,558	6,824

VOLUME REQUIREMENT SATISFIED

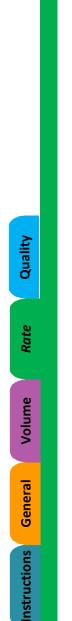
103,288 103,303 NET CHANGE IN VOLUME TO MANAGE (CF): TOTAL CREDITS (CF):

103,303 INFILTRATION & ET CREDITS (CF):

26,045

77,258

Totals:


Page 2

Volume Worksheet

7/30/2021

Rate Control

Precipitation Amounts:

NOAA 2-Year 24-Hour Storm Event (in): NOAA 10-Year 24-Hour Storm Event (in): NOAA 50-Year 24-Hour Storm Event (in): NOAA 100-Year 24-Hour Storm Event (in):

Alternative 2-Year 24-Hour Storm Event (in): Alternative 10-Year 24-Hour Storm Event (in): Alternative 50-Year 24-Hour Storm Event (in): Alternative 100-Year 24-Hour Storm Event (in):

Report Summary of Peak Rates Only

Attach model input and output data or other calculations to support the rates reported below.

	Pe	Peak Discharge Rates (cfs)	fs)	
	Pre-Construction	Pre-Construction Post-Construction	Net Change	
2-Year Storm:	38.99	24.37	-14.62	Rate Control Satisfied
10-Year Storm:	85.79	49.42	-36.37	Rate Control Satisfied
50-Year Storm:	148.27	81.67	-66.60	Rate Control Satisfied
100-Year Storm:	179.87	99.83	-80.04	Rate Control Satisfied

PRINT

Instructions General Volume Rate Quality

Pre-Construction Pollutant Loads:

	Land Cover for Water	Area	Soil	Runoff	Polluta	Pollutant Conc. (mg/L)	(mg/L)		Pollutant Loads (lbs)	s (Ibs)
	Quality	(acres)	Group	volume (cf)	TSS	ТР	TN	TSS	ТР	TN
Pervious as Meadow	Grassland/Herbaceous	0.19	В	78	48.8	0.22	2.30	0.24	0.00	0.01
Pervious as Meadow	Grassland/Herbaceous	11.88	С	19,277	48.8	0.22	2.30	58.74	0.26	2.77
Pervious as Meadow	Grassland/Herbaceous	9.74	D	25,817	48.8	0.22	2.30	78.67	0.35	3.71
Forested (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	3.25	۵	788	45.0	0.13	1.05	2.22	0.01	0.05
Forested (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	1.54	С	2,309	45.0	0.13	1.05	6.49	0.02	0.15
Forested (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	36.28	D	90,151	45.0	0.13	1.05	253.32	0.73	5.91
	TOTAL (ACRES):	62.88				TO	TOTALS:	399.67	1.38	12.60

Post-Construction Pollutant Loads (without BMPs):

Pollutant Loads (lbs) Pollutant Conc. (mg/L) Runoff Volumo Soil Area Land Cover for Water I and Cover Ifrom Volume Morkeheet)

רמוות ההעבו לווחווו עטומוווב עעטומברל	Quality	(acres) Gro	Group vouune (cf)	TSS	ТР	N	TSS	ТР	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	13.97 N	N/A 110,615	65.0	0.29	2.05	448.96	2.00	14.16
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	27.39	D 82,233	78.0	0.25	1.25	400.52	1.28	6.42
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland/Herbaceous	0.03	B 12	48.8	0.22	2.30	0.04	00.0	0.00
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland/Herbaceous	5.01	C 8,130	48.8	0.22	2.30	24.77	0.11	1.17
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland/Herbaceous	0.84	D 2,226	48.8	0.22	2.30	6.78	0.03	0.32
Woods (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	15.49	D 38,491	45.0	0.13	1.05	108.16	0.31	2.52
	TOTAL (ACRES):	62.73			D D	TOTALS:	989.23	3.74	24.59
	4	OLLUTANT LC	POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS):	N REQUIRE	MENTS	(LBS):	589.57	2.36	11.99
 Characterize Undetained Areas (for Untreated Stormwater) 		No. Rows:	4						
Land Cover	Area (acres)	Soil Group	p CN	la (in)		Q Runoff (in)		Runoff Volume (cf)	me (cf)
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	meteries, 4.74	۵	80	0.500		0.83		14,234	4
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grazing 5.01	C	71	0.817		0.45		8,130	

1,829

0.73

0.564

78

۵

0.69

Meadow-Continuous Grass, Protected from Grazing

and Generally Mowed for Hay

Non-Structural BMP Water Quality Credits:

Pervious Undetained Area Credit

✓ Other (attach calculations)

Description: NS BMP 5.9.1 - Street Sweeping

TN	1.49	
ТР	0.41	
TSS	135.11	

Structural BMP Water Quality Credits:

☑ Use default BMP Outflows and Median BMP Outflow Concentrations

	BMP		SC?	BMP	Vol. Routed	. Routed Inf. & ET	Capture &	Outflow	Outflo	w Conc.	(mg/L)	Outflow Conc. (mg/L) Pollutant Loads (lbs)	ant Load	ls (lbs)
			W	(acres) to	to BMP (CF)	Credits (CF)	o BMP (CF) Credits (CF) Credits (CF)	(CF)	TSS	TSS TP	TN	TSS	dТ	TN
002	3	Infiltration Basin	1	2.24	148,488	73,921		74,567	10.00	0.24	1.04	10.00 0.24 1.04 46.56 1.12 4.84	1.12	4.84
002	4	Infiltration Basin	I	40.30	160,512	29,382		131,130	ı	ı	ı	ı	·	ı

	TSS	ТР	NT
OUTFLOWS (LBS):	46.56	1.12	4.84
JRMWATER (LBS):	183.32	0.60	4.49
TY CREDITS (LBS):	135.11	0.41	1.49
STRUCTION (LBS):	94.77	1.31	7.85
STRUCTION (LBS):	399.67	399.67 1.38	12.60
WATER QUALITY REQUIREMENT SATISFIED	EQUIREN	AENT SA	TISFIED

39	POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS): 39
6	NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS):
13	NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS): 13
18	POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS): 18
4	POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS):

7/30/2021

I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

ALB	Spreadsheet User Name

5/12/2021

Date

Quality Worksheet

NON-STRUCTURAL BMP POLUTANT LOAD REDUCTION CALCULATION

PROJECT: Drainage Area: 2-Year Rainfall: Meadows Landing
2.41 in

NS BMP 5.9.1 - Street Sweeping / Vacuuming

Cover Type Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Initial Runoff Volume ² (ft ³)
Impervious	D	99,316.8	2.28	98	0.20	0.04	2.18	18,053
TOTAL:			2.28					18,053

Event Mean	Pollutant Concentrations
	Areas: Streets and Roads -
Paved; Ope	en Ditches (Including ROW)
TSS (mg/L)	141
TP (mg/L)	0.43
TN (mg/L)	2.65

F	Pollutant Loads
TSS (lbs)	158.95
TP (lbs)	0.48
TN (lbs)	2.99

From Stormwater BMP Manual - Appendix A - Table A-4:

	TSS (%)	TP (%)	TN (%)
Pollutant Removal Efficiency	85	85	50

Pollutant	Load Reduction Credits
TSS (lbs)	135.11
TP (lbs)	0.41
TN (lbs)	1.49

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P - 0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in)

Area = Land use area (sq. ft)

Pollutant Loads are calculated by the equation:

Event Mean Pollutant Concentration (mg/L) x (Runoff Volume (CF) / 43,560 CF/acre-ft) x 2.72 (conversion factor)

Note:

Runoff Volume must be calculated for EACH land use type/condition and HSG.

The use of a weighted CN value for volume calculations is not acceptable.

A minimum of 20% of existing impervious coverage MUST be designated as meadow, per PaDEP BMP Guidelines.

Volume Management

Instructions General Volume Rate Quality							
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 2.41 inches	Alternative 2-Year / 24-Hour Storm Event	ar / 24-Hour Stor	m Event		inches		
	Alternative Source:	ce:					
Pre-Construction Conditions: 🛛 🛛 🛛 Exemp	🔲 Exempt from Meadow in Good Condition 🗹 Automatically Calculate CN, Ia, Runoff and Volume	Good Condition	☑ Automa	tically Calcu	late CN, Ia, Runc	ff and Volume	
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)	
Pervious as Meadow	4.60	В	58	1.448	0.11	1,883	
Pervious as Meadow	0.04	С	11	0.817	0.45	65	
Pervious as Meadow	21.79	D	82	0.564	0.73	57,756	
Forested (Good Condition)	13.80	۵	<i>11</i>	0.597	0.68	34,291	
TOTAL (ACRES):	: 40.23				TOTAL (CF):	93,995	
Post-Construction Conditions: No. Rows: 6							
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)	
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	7.67	N/A	86	0.041	2.18	60,732	
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	9.33	۵	80	0.500	0.83	28,017	
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	1.32	В	58	1.448	0.11	540	
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for	12.67	۵	78	0.564	0.73	33,583	

Нау

woods (9000	Woods (Good Condition)					0.01		В	55	1.636	0.07		2
Woods (Good Condition)	Condition)					10.26		Q	77	0.597	0.68	5	25,495
				TOT	TOTAL (ACRES):	41.26					TOTAL (CF):	_	148,368
								JET CHA	NGE IN V	OLUME TO I	JET CHANGE IN VOLUME TO MANAGE (CF):		54,374
on-Structural	Non-Structural BMP Volume Credits:												
Tree Planting Credit	ng Credit												
Other (atta	Other (attach calculations):												
ructural BMP	Structural BMP Volume Credits:	Νο	No. Structural BMPs:		1	Start BN	Start BMP Numbering at:		5				
DP No. BMP No.	BMP Name	MBCS	Discharge	Incrementa I BMP DA (acres)	Volume Routed to BMP (CF)	Infiltration / Vegetated Area (SF)	Infiltration Rate (in/hr)	Infiltration Infiltration Rate (in/hr) Period (hrs)	Vegeta- ted?	Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF)	ET Credit (CF)
003 5	Infiltration Basin	ı	Off-Site	34.84	78,481	16,343	0.80	72	Yes	2.0	35,563	47,330	8,596
	-										Totals:	47,330	8,596
									INFILTR	ATION & ET	INFILTRATION & ET CREDITS (CF):		55,926
								NET CH	ANGE IN	VOLUME TC	NET CHANGE IN VOLUME TO MANAGE (CF):		54,374
										TOTAL	TOTAL CREDITS (CF):		55,926

Page 2

Rate Control

Precipitation Amounts:

NOAA 2-Year 24-Hour Storm Event (in): NOAA 10-Year 24-Hour Storm Event (in): NOAA 50-Year 24-Hour Storm Event (in): NOAA 100-Year 24-Hour Storm Event (in):

Alternative 2-Year 24-Hour Storm Event (in): Alternative 10-Year 24-Hour Storm Event (in): Alternative 50-Year 24-Hour Storm Event (in): Alternative 100-Year 24-Hour Storm Event (in):

Attach model input and output data or other calculations to support the rates reported below.

	Pe	Peak Discharge Rates (cfs)	fs)	
	Pre-Construction	Pre-Construction Post-Construction	Net Change	
2-Year Storm:	24.94	7.40	-17.54	Rate Control Satisfied
10-Year Storm:	54.89	16.66	-38.23	Rate Control Satisfied
50-Year Storm:	94.86	48.97	-45.89	Rate Control Satisfied
100-Year Storm:	115.08	65.32	-49.76	Rate Control Satisfied
-				

PRINT

Instructions General Volume Rate Quality

Pre-Construction Pollutant Loads:

I and Course (from Volumo Morlschoot)	Land Cover for Water	Area	Soil	Runoff Volumo	Polluta	nt Conc.	(mg/L)	Pollutant Conc. (mg/L) Pollutant Loads (lbs)	ant Loac	s (Ibs)
	Quality	(acres) Group	Group	(cf)	TSS	ТР	TN	TSS	ТР	TN
Pervious as Meadow	Grassland/Herbaceous	4.60	В	1,883	48.8	0.22	2.30	48.8 0.22 2.30 5.74	0.03	0.27
Pervious as Meadow	Grassland/Herbaceous	0.04	U	65	48.8	0.22	48.8 0.22 2.30	0.20	0.00	0.01
Pervious as Meadow	Grassland/Herbaceous	21.79	D	57,756	48.8	0.22	2.30	48.8 0.22 2.30 175.99 0.79	62.0	8.29
Forested (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	13.80	D	34,291	45.0	0.13	1.05	45.0 0.13 1.05 96.36	0.28	2.25
	TOTAL (ACRES):	40.23				TC	TALS:	TOTALS: 278.28 1.10	1.10	10.82

Post-Construction Pollutant Loads (without BMPs):

	Land Cover for Water	Area	Soil	Runoff Velume	Polluta	nt Conc.	(mg/L)	Pollutant Conc. (mg/L) Pollutant Loads (lbs)	ant Load	s (Ibs)
	Quality	(acres) Group	Group	(cf)	TSS	TSS TP	TN	TN TSS TP	ΤP	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	7.67	N/A	60,732	65.0	0.29	2.05	65.0 0.29 2.05 246.50 1.10 7 <i>.77</i>	1.10	7.77

Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	9.33	۵	28,017	78.0	0.25	1.25	1.25 136.46	0.44	2.19
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland/Herbaceous	1.32	В	540	48.8	0.22	2.30	1.65	0.01	0.08
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	Grassland/Herbaceous	12.67	D	33,583	48.8	0.22	2.30	102.33	0.46	4.82
Woods (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	0.01	В	2	45.0	0.13	1.05	0.01	0.00	0.00
Woods (Good Condition)	Deciduous Forest/Evergreen Forest/Mixed Forest	10.26	۵	25,495	45.0	0.13	1.05	71.64	0.21	1.67
	TOTAL (ACRES):	41.26				10	TOTALS:	558.58	2.21	16.53

POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS): 280.29 1.11 5.71

Characterize Undetained Areas (for Untreated Stormwater)

No. Rows: 5

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Q Runoff (in) Runoff Volume (cf)
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	0.6	D	80	0.500	0.83	1,802
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	0.19	B	58	1.448	0.11	78
Meadow-Continuous Grass, Protected from Grazing and Generally Mowed for Hay	1.3	D	78	0.564	0.73	3,446
Woods (Good Condition)	0	В	55	1.636	0.07	0
Woods (Good Condition)	4.33	D	77	0.597	0.68	10,759

Quality Worksheet

Page 2

Non-Structural BMP Water Quality Credits:

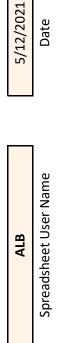
Pervious Undetained Area Credit

□ Other (attach calculations)

Structural BMP Water Quality Credits:

☑ Use default BMP Outflows and Median BMP Outflow Concentrations

	BMP		SC?	BMP	Vol. Routed Inf. & ET	Inf. & ET	Capture &	Outflow	Outflo	w Conc. ((mg/L)	Outflow Conc. (mg/L) Pollutant Loads (lbs)	int Load	s (Ibs)
	No.		W	(acres)	to BMP (CF)	Credits (CF)	to BMP (CF) Credits (CF) Credits (CF)	(CF)	TSS	ТР	TN	TSS	ТР	TN
003	5	Infiltration Basin	I	34.84	78,481	55,926		22,555	10.00	0.24	1.04	10.00 0.24 1.04 14.08 0.34 1.46	0.34	1.46

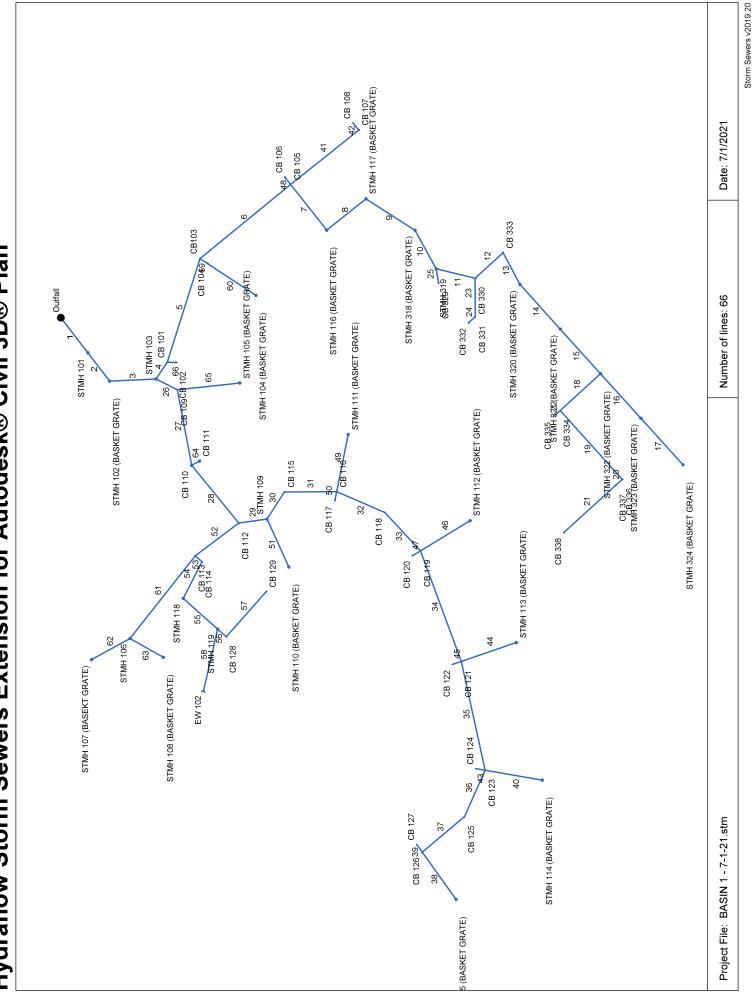

	TSS	TSS TP	TN	
POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS): 14.08 0.34 1.46	14.08	0.34	1.46	
POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS): 49.75 0.16 1.35	49.75	0.16	1.35	
NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS):				
NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS): 63.83 0.50 2.82	63.83	0.50	2.82	
POLLUTANT LOADS FROM SITE. PRE-CONSTRUCTION (LBS): 278.28 1.10 10.82	278.28	1.10	10.82	

0T'T 07'0/7

WATER QUALITY REQUIREMENT SATISFIED

CERTIFICATION

I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.



7/30/2021

APPENDIX F

PIPE AND STORM SEWER CALCULATIONS

100-yr Storm Sewer Analysis Tributary to Basin 1

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Report	_
Summary	
Sewer :	
torm	

Storn	Storm Sewer Summary Report	lary	Report	فسك										Page 1
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
-	EW to STMH 101	123.6	36	Cir	90.000	1110.00	1118.27	9.189	1112.98	1121.22	n/a	1121.22	End	Manhole
N	STMH 101 to STMH 102	123.7	30	Cir	72.256	1118.47	1131.84	18.504	1121.22	1134.33	n/a	1134.33	Ţ	Manhole
б	STMH 102 to STMH 103	113.4	30	Cir	94.500	1132.04	1138.46	6.794	1134.33	1140.95	6.89	1140.95	7	Manhole
4	STMH 103 to CB 101	38.69	24	Cir	41.000	1138.66	1140.16	3.659	1140.95	1142.11	n/a	1142.11 j	с	Generic
5	CB 101 to CB 103	35.26	24	Cir	220.133	1140.37	1149.17	3.998	1142.11	1151.09	3.02	1151.09	4	Generic
Q	CB 103 to CB 105	30.60	24	Cir	237.735	1148.87	1174.02	10.579	1151.09	1175.89	n/a	1175.89 j	5	Generic
7	CB 105 to STMH 116	25.72	24	Cir	118.000	1174.72	1175.90	1.000	1176.47	1177.68	1.18	1177.68	9	Manhole
ω	STMH 116 to STMH 117	24.33	18	Cir	102.000	1176.10	1180.18	4.000	1177.68*	1182.35*	2.83	1185.18	7	Manhole
თ	STMH 117 to STMH 318	23.85	18	Cir	118.650	1182.13	1227.93	38.601	1185.18	1229.41	n/a	1229.41 j	ω	Manhole
10	STMH 318 to STMH 319	16.20	18	Cir	89.000	1229.88	1237.58	8.652	1230.62	1239.01	n/a	1239.01	ი	Manhole
11	STMH 319 to CB 330	14.26	18	Cir	81.471	1237.78	1238.54	0.933	1239.28*	1240.56*	1.48	1242.04	10	Generic
12	CB 330 to CB 333	11.39	18	Cir	77.000	1238.74	1239.51	1.000	1242.04*	1242.81*	0.97	1243.78	1	Generic
13	CB 333 to STMH 320	10.80	18	Cir	72.975	1239.71	1240.44	1.000	1243.78*	1244.44*	0.17	1244.61	12	Manhole
14	STMH 320 to STMH 321	9.99	18	Cir	122.000	1240.64	1245.91	4.320	1244.61	1247.13	n/a	1247.13 j	13	Manhole
15	STMH 321 to STMH 322	8.65	18	Cir	122.000	1246.11	1250.37	3.492	1247.13	1251.51	n/a	1251.51	14	Manhole
16	STMH 322 to STMH 323	3.38	18	Cir	122.000	1250.57	1257.32	5.533	1251.51	1258.02	n/a	1258.02 j	15	Manhole
17	STMH 323 to STMH 324	1.99	18	Cir	127.204	1257.52	1259.79	1.785	1258.02	1260.32	0.20	1260.32	16	Manhole
18	STMH 322 to CB 334	4.36	18	Cir	111.000	1250.57	1254.04	3.126	1251.51	1254.84	n/a	1254.84 j	15	Generic
19	CB 334 to CB 336	2.64	18	Cir	188.120	1254.24	1256.12	0.999	1254.84	1256.74	n/a	1256.74	18	Generic
20	CB 336 to CB 337	1.94	18	Cir	18.001	1256.32	1256.50	1.000	1256.74	1257.03	n/a	1257.03	19	Generic
21	CB 337 to CB 338	1.62	18	Cir	142.000	1256.70	1258.12	1.000	1257.08	1258.60	0.17	1258.60	20	Generic
22	CB 334 to CB 335	1.04	18	Cir	18.001	1254.24	1255.94	9.444	1254.84	1256.32	n/a	1256.32 j	18	Generic
23	CB 330 to CB 331	3.16	18	Cir	77.740	1238.74	1243.38	5.969	1242.04	1244.06	n/a	1244.06 j	11	Generic
24	CB 331 to CB 332	1.64	18	Cir	18.001	1243.58	1244.38	4.445	1244.06	1244.86	0.17	1244.86	23	Generic
Project I	Project File: BASIN 1 - 7-1-21.stm								Number of lines: 66	F lines: 66		Run E	Run Date: 7/1/2021	21

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

sport
Ř
Summary F
Sewer
torm

Storr	Storm Sewer Summary		Report											Page 2
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	STMH 319 to CB 329	2.48	18	Cir	28.561	1237.78	1239.79	7.038	1239.01	1240.39	n/a	1240.39 j	10	Generic
26	STMH 103 to CB 109	77.02	36	Cir	48.562	1138.66	1139.15	1.009	1141.33	1141.89	n/a	1141.89	ю	Generic
27	CB 109 to CB 110	68.07	36	Cir	155.896	1138.85	1143.44	2.944	1141.89	1146.07	2.51	1146.07	26	Generic
28	CB 110 to CB 112	66.91	36	Cir	151.088	1143.89	1145.40	0.999	1146.17	1148.01	n/a	1148.01	27	Generic
29	CB 112 to STMH 109	36.96	30	Cir	58.151	1145.35	1152.69	12.622	1148.01	1154.75	n/a	1154.75 j	28	Manhole
30	STMH 109 to CB 115	28.78	24	Cir	65.091	1154.19	1160.49	9.679	1155.04	1162.33	n/a	1162.33	29	Generic
31	CB 115 to CB 116	28.36	24	Cir	106.480	1160.69	1165.78	4.780	1162.33	1167.61	n/a	1167.61	30	Generic
32	CB 116 to CB 118	21.74	24	Cir	106.499	1165.48	1178.00	11.756	1167.61	1179.67	n/a	1179.67 j	31	Generic
33	CB 118 to CB 119	21.17	24	Cir	106.462	1178.20	1181.28	2.893	1179.67	1182.93	1.37	1182.93	32	Generic
34	CB 119 to CB 121	17.68	18	Cir	239.000	1181.98	1188.78	2.845	1183.12	1190.23	n/a	1190.23	33	Generic
35	CB 121 to CB 123	10.44	18	Cir	225.652	1188.98	1192.78	1.684	1190.23	1194.02	n/a	1194.02 j	34	Generic
36	CB 123 to CB 125	4.96	18	Cir	102.864	1192.98	1195.46	2.411	1194.02	1196.32	n/a	1196.32 j	35	Generic
37	CB 125 to CB 126	4.39	18	Cir	112.218	1195.66	1196.78	0.998	1196.32	1197.58	0.48	1197.58	36	Generic
38	CB 126 to STMH 115	2.43	18	Cir	118.000	1196.98	1198.75	1.500	1197.58	1199.34	n/a	1199.34 j	37	Manhole
39	CB 126 to CB 127	1.09	18	Cir	18.001	1196.98	1198.21	6.833	1197.58	1198.60	n/a	1198.60 j	37	Generic
40	CB 123 to STMH 114	4.56	18	Cir	118.000	1192.98	1194.75	1.500	1194.02	1195.57	n/a	1195.57]	35	Manhole
41	CB 105 to CB 107	3.43	18	Cir	177.015	1174.72	1193.22	10.451	1175.89	1193.93	n/a	1193.93 j	9	Generic
42	CB 107 to CB 108	0.67	18	Cir	18.001	1193.42	1193.69	1.499	1193.93	1193.99	n/a	1193.99 j	41	Generic
43	CB 123 to CB 124	1.06	18	Cir	18.001	1192.98	1195.02	11.333	1194.02	1195.41	n/a	1195.41 j	35	Generic
44	CB 121 to STMH 113	5.34	18	Cir	117.999	1188.98	1190.75	1.500	1190.23	1191.64	n/a	1191.64 j	34	Manhole
45	CB 121 to CB 122	1.49	18	Cir	18.001	1188.98	1190.54	8.667	1190.23	1191.00	n/a	1191.00 j	34	Generic
46	CB 119 to STMH 112	1.68	18	Cir	118.000	1181.98	1183.75	1.500	1182.93	1184.24	n/a	1184.24 j	33	Manhole
47	CB 119 to CB 120	1.35	18	Cir	18.001	1181.98	1183.58	8.888	1182.93	1184.02	n/a	1184.02 j	33	Generic
48	CB 105 to CB 106	1.10	18	Cir	18.001	1174.72	1176.75	11.277	1175.89	1177.14	n/a	1177.14 j	9	Generic
Project	Project File: BASIN 1 - 7-1-21.stm								Number of lines: 66	· lines: 66		Run	 Run Date: 7/1/2021	021

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Report	-
Summary	
Sewer	
torm	

Storr	Storm Sewer Summary Report	าลry	Repor	÷										Page 3
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49	CB 116 to STMH 111	6.00	18	Cir	118.000	1165.98	1167.75	1.500	1167.61	1168.70	n/a	1168.70 j	31	Manhole
50	CB 116 to CB 117	1.13	18	Cir	18.001	1165.98	1166.97	5.500	1167.61	1167.59	0.04	1167.63	31	Generic
51	STMH 109 to STMH 110	9.64	18	Cir	106.737	1154.19	1155.79	1.499	1155.11	1156.99	n/a	1156.99	29	Manhole
52	CB 112 to CB 113	29.89	24	Cir	110.523	1145.86	1146.96	0.995	1148.01*	1149.66*	2.14	1151.80	28	Generic
53	CB 113 to CB 114	19.75	24	Cir	18.001	1147.16	1149.09	10.721	1151.80*	1151.91*	0.90	1152.81	52	Generic
54	CB 114 to STMH 118	15.95	24	Cir	83.299	1149.29	1151.69	2.881	1152.81	1153.13	n/a	1153.13 j	53	Manhole
55	STMH 118 to STMH 119	16.11	24	Cir	93.500	1151.89	1152.82	0.995	1153.13	1154.27	0.61	1154.27	54	Manhole
56	STMH 119 to CB 128	11.10	24	Cir	23.500	1153.02	1153.25	0.979	1154.27	1154.44	n/a	1154.44 j	55	Generic
57	CB 128 to CB 129	5.45	18	Cir	122.000	1153.45	1154.67	1.000	1154.44	1155.57	n/a	1155.57 j	56	Generic
58	STMH 119 to EW 102	5.19	18	Cir	129.209	1153.02	1159.50	5.015	1154.27	1160.38	n/a	1160.38 j	55	OpenHeadwall
59	CB 103 to CB 104	4.71	18	Cir	18.001	1149.37	1149.55	1.000	1151.09*	1151.12*	0.06	1151.18	S	Generic
60	CB 104 to STMH 104	3.43	18	Cir	118.000	1149.75	1151.52	1.500	1151.18	1152.23	n/a	1152.23 j	59	Manhole
61	CB 113 to STMH 106	10.91	18	Cir	213.675	1147.16	1149.22	0.964	1151.80*	1153.76*	0.59	1154.35	52	Manhole
62	STMH 106 to STMH 107	12.77	15	Cir	89.000	1149.42	1150.39	1.090	1154.35*	1157.32*	1.68	1159.01	61	Manhole
63	STMH 106 to STMH 108	0.39	18	Cir	77.766	1153.72	1155.28	2.006	1154.35	1155.51	n/a	1155.51 j	61	Manhole
64	CB 110 to CB 111	1.38	18	Cir	18.000	1144.14	1145.43	7.167	1146.07	1146.02	0.07	1146.09	27	Generic
65	CB 109 to STMH 105	10.88	18	Cir	128.014	1139.35	1140.95	1.250	1141.89*	1143.06*	0.59	1143.65	26	Manhole
66	CB 101 to CB 102	1.83	15	Cir	18.001	1140.36	1141.82	8.111	1142.11	1142.36	n/a	1142.36 j	4	Generic
Project	Project File: BASIN 1 - 7-1-21.stm								Number o	Number of lines: 66		Run	Run Date: 7/1/2021	2021

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storm Sewers v2019.20

0			Dewel	-		apulation	_		-	-	-	-	-		-					_		
Station	c	Len	Drng Area		Rnoff	Area x C	U	Τc	`	Rain T	Total C	_	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line	To		Incr	Total	соец	Incr .	Total	Inlet	Syst					Size	Slope D	Du	Чр	Dn	Чp	Dn	Чр	
		(ft)	(ac)	(ac)	(c))	(min) ((min) ((in/hr) ((cfs)	(cfs) ((ft/s)	(in) ('	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
~	End	90.00	00.0	36.03	0.00	00.0	16.21	0.0	13.3	7.6	123.6	219.0	17.52	36	9.19	1110.00	1118.27	1112.98	1121.22	1112.13	1125.31	EW to STMH 101
7	-	72.256	2.10	36.03	0.66	1.39	16.21	5.0	13.3	7.6	123.7	191.1	25.22	30	18.50	1118.47	1131.84	1121.22	1134.33	1125.31	1144.12	STMH 101 to ST
с	7	94.500	00.0	33.93	00.0	0.00	14.83	0.0	13.2	7.6	113.4	115.8	23.57	30	6.79	1132.04	1138.46	1134.33	1140.95	1144.12	1149.70	STMH 102 to ST
4	ო	41.000	0.63	10.96	0.48	0.30	5.05	5.0	13.1	7.7	38.69	46.87	12.36	24	3.66	1138.66	1140.16	1140.95	1142.11	1149.70	1148.82	STMH 103 to CB
5	4	220.133	0.30	9.95	0.50	0.15	4.56	5.0	12.8	7.7	35.26	48.99	11.78	24	4.00	1140.37	1149.17	1142.11	1151.09	1148.82	1158.77	CB 101 to CB 103
9	5	237.735	0.39	8.41	0.45	0.18	3.92	5.0	12.4	7.8	30.60	79.70	9.88	24	10.58	1148.87	1174.02	1151.09	1175.89	1158.77	1181.75	CB 103 to CB 105
7	9	118.000	0.49	6.80	0.38	0.19	3.27	5.0	12.2	7.9	25.72	24.50	8.77	24	1.00	1174.72	1175.90	1176.47	1177.68	1181.75	1180.84	CB 105 to STMH
8	7	102.000	0.25	6.31	0.29	0.07	3.08	5.0	12.0	7.9	24.33	22.75	13.77	18	4.00	1176.10	1180.18	1177.68	1182.35	1180.84	1192.50	STMH 116 to ST
ი	ω	118.650	1.68	6.06	0.58	0.97	3.01	5.0	11.9	7.9	23.85	70.68	13.51	18	38.60	1182.13	1227.93	1185.18	1229.41	1192.50	1241.94	STMH 117 to ST
10	6	89.000	00.0	4.38	00.0	0.00	2.04	0.0	11.7	8.0	16.20	33.46	14.06	18	8.65	1229.88	1237.58	1230.62	1239.01	1241.94	1247.07	STMH 318 to ST
11	10	81.471	0.12	3.93	0.35	0.04	1.78	5.0	11.6	8.0	14.26	10.99	8.07	18	0.93	1237.78	1238.54	1239.28	1240.56	1247.07	1248.44	STMH 319 to CB
12	1	77.000	0.27	3.16	0.30	0.08	1.42	5.0	11.4	8.0	11.39	11.38	6.45	18	1.00	1238.74	1239.51	1242.04	1242.81	1248.44	1249.80	CB 330 to CB 333
13	12	72.975	0.37	2.89	0.30	0.11	1.34	5.0	11.2	<u>8</u> .7	10.80	11.38	6.11	18	1.00	1239.71	1240.44	1243.78	1244.44	1249.80	1250.04	CB 333 to STMH
14	13	122.000	0.43	2.52	0.41	0.18	1.23	5.0	10.9	8.2	6.99	23.64	6.08	18	4.32	1240.64	1245.91	1244.61	1247.13	1250.04	1255.54	STMH 320 to ST
15	14	122.000	0.40	2.09	0.41	0.16	1.05	5.0	10.5	8.2	8.65	21.26	6.40	18	3.49	1246.11	1250.37	1247.13	1251.51	1255.54	1261.03	STMH 321 to ST
16	15	122.000	0.39	0.78	0.42	0.16	0.37	5.0	6.9	9.2	3.38	26.76	3.54	18	5.53	1250.57	1257.32	1251.51	1258.02	1261.03	1266.26	STMH 322 to ST
17	16	127.204	0.39	0.39	0.52	0.20	0.20	5.0	5.0	8.0	1.99	15.20	3.71	18	1.78	1257.52	1259.79	1258.02	1260.32	1266.26	1269.76	STMH 323 to ST
18	15	111.000	0.24	0.91	0.49	0.12	0.52	5.0	9.8	8.4	4.36	20.11	4.15	18	3.13	1250.57	1254.04	1251.51	1254.84	1261.03	1261.94	STMH 322 to CB
19	18	188.120	0.16	0.47	0.50	0.08	0.30	5.0	7.8	6.8	2.64	11.37	3.93	18	1.00	1254.24	1256.12	1254.84	1256.74	1261.94	1269.18	CB 334 to CB 336
20	19	18.001	0.06	0.31	0.84	0.05	0.22	5.0	7.6	0.0	1.94	11.38	4.16	18	1.00	1256.32	1256.50	1256.74	1257.03	1269.18	1269.18	CB 336 to CB 337
21	20	142.000	0.25	0.25	0.66	0.17	0.17	5.0	5.0	8.0	1.62	11.38	3.95	18	1.00	1256.70	1258.12	1257.08	1258.60	1269.18	1264.12	CB 337 to CB 338
22	18	18.001	0.20	0.20	0.53	0.11	0.11	5.0	5.0	9.8	1.04	34.96	2.27	18	9.44	1254.24	1255.94	1254.84	1256.32	1261.94	1261.94	CB 334 to CB 335
Proje	Project File:	:: BASIN 1 - 7-1-21.stm	1 - 7-1-;	21.stm												Number	Number of lines: 66	ç		Run Dat	Run Date: 7/1/2021	21

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

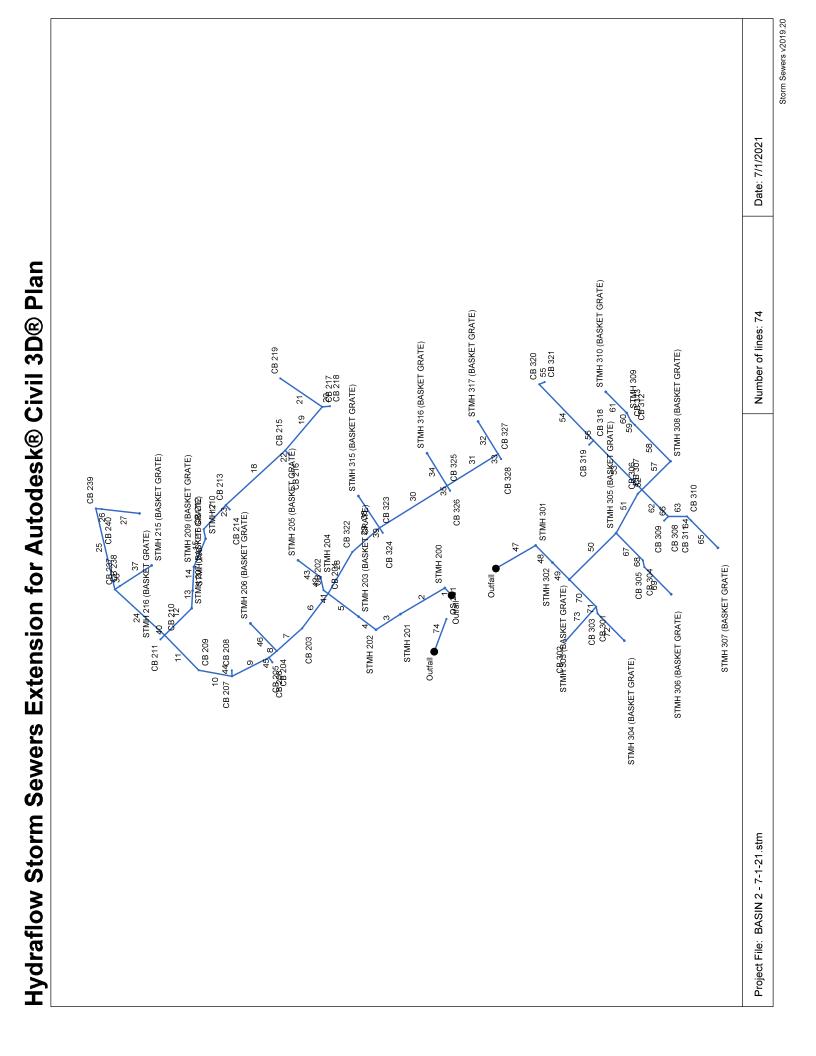
Page 1

Page 2

5				-		abulatio				ŀ	F	ŀ	ŀ									
Station		Len	Drng Area		Rnoff	Area x C	U	Тc	<u> </u>	Rain T	otal	Cap V	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	n Elev	Line ID
Line	To		Incr	Total		Incr	Total	Inlet	Syst		Ň	5	_ 07	Size	Slope D	Du	Up	Dn	Чр	Dn	Up	
		(ft)	(ac)	(ac)	(c)			(min)	(min)	(in/hr) ((cfs) (c	(cfs)	(ft/s) ((in) (⁽	(%) (f	(tt)	(ft)	(ft)	(ft)	(ft)	(ft)	
23	11	77.740	0.31	0.65	0.51	0.16	0.32	5.0	5.3	9.7	3.16	27.79	2.94	18	5.97	1238.74	1243.38	1242.04	1244.06	1248.44	1250.38	CB 330 to CB 331
24	23	18.001	0.34	0.34	0.49	0.17	0.17	5.0	5.0	8.0	1.64	23.98	3.38	18	4.44	1243.58	1244.38	1244.06	1244.86	1250.38	1250.38	CB 331 to CB 332
25	10	28.561	0.45	0.45	0.56	0.25	0.25	5.0	5.0	9.8	2.48	30.18	2.70	18	7.04	1237.78	1239.79	1239.01	1240.39	1247.07	1245.79	STMH 319 to CB
26	ო	48.562	0.18	22.97	0.52	0.09	9.77	5.0	12.1	7.9	77.02	72.58	11.48	36	1.01	1138.66	1139.15	1141.33	1141.89	1149.70	1149.50	STMH 103 to CB
27	26	155.896	0.12	20.09	0.57	0.07	8.57	5.0	11.8	7.9	68.07	124.0	10.00	36	2.94	1138.85	1143.44	1141.89	1146.07	1149.50	1156.41	CB 109 to CB 110
28	27	151.088	0.31	19.70	0.88	0.27	8.37	5.0	11.5	8.0	66.91	72.23	10.92	36	1.00	1143.89	1145.40	1146.17	1148.01	1156.41	1160.17	CB 110 to CB 112
29	28	58.151	0.00	9.18	00.0	0.00	4.37	0.0	9.6	8.5	36.96	157.8	8.04	30	12.62	1145.35	1152.69	1148.01	1154.75	1160.17	1163.73	CB 112 to STMH
30	29	65.091	0.15	7.49	0.47	0.07	3.39	5.0	9.5	8.5	28.78	76.23	16.03	24	9.68	1154.19	1160.49	1155.04	1162.33	1163.73	1166.49	STMH 109 to CB
31	30	106.480	0.15	7.34	0.47	0.07	3.32	5.0	9.3	8.5	28.36	53.57	9.84	24	4.78	1160.69	1165.78	1162.33	1167.61	1166.49	1174.97	CB 115 to CB 116
32	31	106.499	0.20	5.31	0.43	0.09	2.53	5.0	9.0	8.6	21.74 8	84.01	7.35	24	11.76 1	1165.48	1178.00	1167.61	1179.67	1174.97	1183.53	CB 116 to CB 118
33	32	106.462	0.27	5.11	0.44	0.12	2.44	5.0	8.8	8.7	21.17	41.68	8.12	24	2.89	1178.20	1181.28	1179.67	1182.93	1183.53	1191.58	CB 118 to CB 119
34	33	239.000	0.31	4.40	0.49	0.15	2.01	5.0	8.4	80.	17.68	19.19	11.22	18	2.85	1181.98	1188.78	1183.12	1190.23	1191.58	1199.54	CB 119 to CB 121
35	34	225.652	0.08	2.33	0.63	0.05	1.17	5.0	7.8	0.0	10.44	14.76	6.66	18	1.68	1188.98	1192.78	1190.23	1194.02	1199.54	1204.02	CB 121 to CB 123
36	35	102.864	0.16	0.87	0.46	0.07	0.54	5.0	7.2	9.1	4.96	17.66	4.27	18	2.41	1192.98	1195.46	1194.02	1196.32	1204.02	1206.01	CB 123 to CB 125
37	36	112.218	0.22	0.71	0.51	0.11	0.47	5.0	6.4	9.4	4.39	11.37	5.24	18	1.00	1195.66	1196.78	1196.32	1197.58	1206.01	1208.21	CB 125 to CB 126
38	37	118.000	0.26	0.26	0.95	0.25	0.25	5.0	5.0	9.8	2.43	13.93	3.71	18	1.50 1	1196.98	1198.75	1197.58	1199.34	1208.21	1207.19	CB 126 to STMH
39	37	18.001	0.23	0.23	0.48	0.11	0.11	5.0	5.0	8.0	1.09	29.74	2.31	18	6.83	1196.98	1198.21	1197.58	1198.60	1208.21	1208.21	CB 126 to CB 127
40	35	118.000	1.19	1.19	0.39	0.46	0.46	5.0	5.0	9.8	4.56	13.93	4.05	18	1.50 1	1192.98	1194.75	1194.02	1195.57	1204.02	1203.57	CB 123 to STMH
41	g	177.015	0.88	1.00	0.33	0.29	0.36	5.0	5.8	9.6	3.43	36.78	3.26	18	10.45 1	1174.72	1193.22	1175.89	1193.93	1181.75	1198.69	CB 105 to CB 107
42	41	18.001	0.12	0.12	0.57	0.07	0.07	5.0	5.0	9.8	0.67	13.93	1.95	18	1.50 1	1193.42	1193.69	1193.93	1193.99	1198.69	1198.69	CB 107 to CB 108
43	35	18.001	0.19	0.19	0.57	0.11	0.11	5.0	5.0	8.6	1.06	38.30	1.89	18	11.33 1	1192.98	1195.02	1194.02	1195.41	1204.02	1204.02	CB 123 to CB 124
44	34	117.999	1.43	1.43	0.38	0.54	0.54	5.0	5.0	8.6	5.34	13.93	4.15	18	1.50 1	1188.98	1190.75	1190.23	1191.64	1199.54	1199.11	CB 121 to STMH
Proje	ict File:	Project File: BASIN 1 - 7-1-21.stm	1 - 7-1-2	21.stm												Number (Number of lines: 66			Run Dat	Run Date: 7/1/2021	1

Storm Sewers v2019.20

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box


Page 3

ก	Storm		Oewel	-	abulation		_		-	-	-	-			-						-	
Sta	Station	Len	Drng Area		Rnoff	Area x C	U	Тс	<u> </u>	Rain 7	_	Cap • · · ·	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line	e To Lino		Incr	Total		Incr	Total	Inlet	Syst	-	MO	5	_ 07	Size S	Slope D	ū	Up	Dn	Чp	D	ЧÞ	
		(ft)	(ac)	(ac)	(c)			(min)	(min) ((in/hr) ((cfs)	(cfs)	(ft/s) ((in) ((%)	(ft)	(ft)	(ft)	(tt)	(ft)	(ft)	
45	34	18.001	0.33	0.33	0.46	0.15	0.15	5.0	5.0	9.8	1.49	33.49	2.11	18	8.67	1188.98	1190.54	1190.23	1191.00	1199.54	1199.54	CB 121 to CB 122
46	33	118.000	0.18	0.18	0.95	0.17	0.17	5.0	5.0	9.8	1.68	13.93	2.41	18	1.50	1181.98	1183.75	1182.93	1184.24	1191.58	1191.63	CB 119 to STMH
47	33	18.001	0.26	0.26	0.53	0.14	0.14	5.0	5.0	9.8	1.35	33.92	2.17	18	8.89	1181.98	1183.58	1182.93	1184.02	1191.58	1191.58	CB 119 to CB 120
48	Q	18.001	0.22	0.22	0.51	0.11	0.11	5.0	5.0	9.8	1.10	38.20	1.87	18	11.28	1174.72	1176.75	1175.89	1177.14	1181.75	1181.75	CB 105 to CB 106
49	31	118.000	1.65	1.65	0.37	0.61	0.61	5.0	5.0	9.8	6.00	13.93	4.26	18	1.50	1165.98	1167.75	1167.61	1168.70	1174.97	1175.08	CB 116 to STMH
50	31	18.001	0.23	0.23	0.50	0.12	0.12	5.0	5.0	9.8	1.13	26.68	1.15	18	5.50	1165.98	1166.97	1167.61	1167.59	1174.97	1174.97	CB 116 to CB 117
51	29	106.737	1.69	1.69	0.58	0.98	0.98	5.0	5.0	9.8	9.64	13.93	7.44	18	1.50	1154.19	1155.79	1155.11	1156.99	1163.73	1160.79	STMH 109 to ST
52	28	110.523	0.55	10.21	0.50	0.28	3.72	5.0	11.4	8.0	29.89	24.44	9.52	24	1.00	1145.86	1146.96	1148.01	1149.66	1160.17	1158.10	CB 112 to CB 113
53	52	18.001	0.68	5.73	0.62	0.42	2.11	5.0	6.4	9.4	19.75	80.23	6.29	24	10.72	1147.16	1149.09	1151.80	1151.91	1158.10	1158.10	CB 113 to CB 114
54	53	83.299	0.00	5.05	00.0	0.00	1.68	0.0	6.1	9.5	15.95	41.59	5.84	24	2.88	1149.29	1151.69	1152.81	1153.13	1158.10	1159.98	CB 114 to STMH
55	54	93.500	0.00	5.05	00.0	0.00	1.68	0.0	5.8	9.6	16.11	24.44	7.26	24	. 66.0	1151.89	1152.82	1153.13	1154.27	1159.98	1160.07	STMH 118 to ST
56	55	23.500	1.77	3.40	0.34	09.0	1.16	5.0	5.7	9.6	11.10	24.24	5.54	24	0.98	1153.02	1153.25	1154.27	1154.44	1160.07	1160.09	STMH 119 to CB
57	56	122.000	1.63	1.63	0.34	0.55	0.55	5.0	5.0	9.8	5.45	11.38	4.66	18	1.00	1153.45	1154.67	1154.44	1155.57	1160.09	1159.67	CB 128 to CB 129
58	55	129.209	1.65	1.65	0.32	0.53	0.53	5.0	5.0	9.8	5.19	25.48	4.07	18	5.02	1153.02	1159.50	1154.27	1160.38	1160.07	1161.63	STMH 119 to EW
59	5	18.001	0.39	1.24	0.38	0.15	0.50	5.0	6.0	9.5	4.71	11.38	2.67	18	1.00	1149.37	1149.55	1151.09	1151.12	1158.77	1158.77	CB 103 to CB 104
60	59	118.000	0.85	0.85	0.41	0.35	0.35	5.0	5.0	9.8	3.43	13.93	3.09	18	1.50	1149.75	1151.52	1151.18	1152.23	1158.77	1157.52	CB 104 to STMH
61	52	213.675	00.0	3.93	00.0	0.00	1.34	0.0	10.9	8.1	10.91	11.17	6.17	18	0.96	1147.16	1149.22	1151.80	1153.76	1158.10	1162.75	CB 113 to STMH
62	61	89.000	3.82	3.82	0.34	1.30	1.30	5.0	5.0	9.8	12.77	7.30	10.41	15	1.09	1149.42	1150.39	1154.35	1157.32	1162.75	1161.74	STMH 106 to ST
63	61	77.766	0.11	0.11	0.36	0.04	0.04	5.0	5.0	9.8	0.39	16.11	1.41	18	2.01	1153.72	1155.28	1154.35	1155.51	1162.75	1162.29	STMH 106 to ST
64	27	18.000	0.27	0.27	0.52	0.14	0.14	5.0	5.0	9.8	1.38	30.46	1.45	18	7.17	1144.14	1145.43	1146.07	1146.02	1156.41	1156.41	CB 110 to CB 111
65	26	128.014	2.70	2.70	0.41	1.11	1.11	5.0	5.0	9.8	10.88	12.72	6.16	18	1.25	1139.35	1140.95	1141.89	1143.06	1149.50	1149.99	CB 109 to STMH
66	4	18.001	0.38	0.38	0.49	0.19	0.19	5.0	5.0	8.6	1.83	19.92	2.56	15	8.11	1140.36	1141.82	1142.11	1142.36	1148.82	1148.82	CB 101 to CB 102
<u> </u>	oject File	Project File: BASIN 1 - 7-1-21.stm	1 - 7-1-2	1.stm				1						-		Number	Number of lines: 66	J. G		Run Dat	Run Date: 7/1/2021	-

Storm Sewers v2019.20

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

100-yr Storm Sewer Analysis Tributary to Basin 2

<u> </u>
0
Ō.
Φ
Ň
<u> </u>
ā
Я
5
$\overline{\mathbf{O}}$
5
ð
3
Ð
ŏ
-
Ō
Ť

Storr	Storm Sewer Summary Report	l ary l	Report	ىد										Page 1
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
	EW TO STMH200	91.63	36	Cir	30.850	1118.00	1118.62	2.010	1124.86*	1125.36*	2.56	1127.92	End	Manhole
N	STMH200 TO STMH201	92.17	36	Cir	159.537	1120.52	1135.61	9.459	1127.92	1138.47	n/a	1138.47	-	Manhole
ო	STMH201 TO STMH202	92.48	36	Cir	89.872	1136.61	1150.21	15.133	1138.47	1153.07	n/a	1153.07	7	Manhole
4	STMH202 TO STMH203	92.70	36	Cir	67.587	1151.21	1151.89	1.006	1154.21*	1155.32*	0.40	1155.73	ო	Manhole
5	STMH203 TO CB201	76.76	36	Cir	118.000	1152.09	1153.27	1.000	1155.73*	1157.06*	1.83	1158.89	4	Manhole
Q	CB201 TO CB203	54.01	36	Cir	134.000	1153.47	1154.14	0.500	1158.89*	1159.64*	0.22	1159.86	5	Manhole
7	CB203 TO CB204	53.66	36	Cir	105.080	1154.35	1154.87	0.495	1159.86*	1160.44*	06.0	1161.34	9	Manhole
Ø	CB204 TO CB205	45.83	30	Cir	31.801	1155.87	1159.24	10.597	1161.34	1161.56	1.45	1163.01	7	Manhole
თ	CB205 TO CB207	43.61	30	Cir	128.122	1159.44	1161.53	1.631	1163.01*	1164.24*	1.23	1165.47	ø	Manhole
10	CB207 TO CB209	42.25	30	Cir	104.840	1161.73	1165.13	3.243	1165.47	1167.30	0.85	1167.30	თ	Manhole
11	CB209 TO CB210	41.61	24	Cir	151.106	1165.33	1169.51	2.766	1167.30	1171.47	2.75	1171.47	10	Manhole
12	CB210 TO STMH207	31.32	24	Cir	118.000	1169.71	1170.75	0.881	1171.71*	1173.64*	1.11	1174.75	1	Manhole
13	STMH207 TO STMH208	29.11	18	Cir	54.596	1170.95	1174.99	7.400	1174.75*	1178.33*	0.63	1178.96	12	Manhole
14	STMH208 TO STMH209	29.17	18	Cir	73.512	1175.99	1203.23	37.055	1178.96	1204.72	n/a	1204.72 j	13	Manhole
15	STMH209 TO STMH210	17.17	18	Cir	94.000	1204.23	1214.80	11.245	1204.94	1216.24	n/a	1216.24	14	Manhole
16	STMH210 TO CB212	17.20	18	Cir	29.654	1215.00	1215.30	1.012	1216.50*	1217.18*	1.24	1218.42	15	Manhole
17	CB212 TO CB213	14.94	18	Cir	101.400	1215.50	1219.69	4.132	1218.42	1221.09	n/a	1221.09 j	16	Manhole
18	CB213 TO CB215	12.64	18	Cir	249.662	1219.89	1230.94	4.426	1221.09	1232.28	n/a	1232.28	17	Manhole
19	CB215 TO CB217	10.94	18	Cir	177.056	1231.14	1236.65	3.112	1232.28	1237.92	n/a	1237.92	18	Manhole
20	CB217 TO CB218	7.22	15	Cir	23.492	1240.31	1240.84	2.256	1241.07	1241.91	0.65	1241.91	19	Manhole
21	CB217 TO CB219	0.70	15	Cir	156.734	1236.90	1239.42	1.608	1237.92	1239.75	n/a	1239.75 j	19	Manhole
22	CB215 TO CB216	1.18	15	Cir	18.001	1231.19	1231.94	4.167	1232.28	1232.37	n/a	1232.37 j	18	Manhole
23	CB213 TO CB214	1.40	15	Cir	18.001	1219.94	1220.69	4.167	1221.09	1221.16	n/a	1221.16 j	17	Manhole
24	CB210 TO CB237	9.19	18	Cir	209.117	1169.71	1181.70	5.734	1171.47	1182.87	n/a	1182.87 j	1	Manhole
Project	Project File: BASIN 2 - 7-1-21.stm								Number of lines: 74	i lines: 74		Run E	Run Date: 7/1/2021	021

Storm Sewers v2019.20

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storn	Storm Sewer Summary	lary	Report	Ŧ										Page 2
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL (#)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	CB237 TO CB239	4.70	18	Cir	257.102	1181.90	1195.70	5.367	1182.87	1196.53	n/a	1196.53 j	24	Manhole
26	CB239 TO CB240	3.93	18	Cir	18.001	1195.90	1196.08	1.000	1196.53	1196.84	0.04	1196.84	25	Manhole
27	CB240 TO STMH216	2.87	18	Cir	118.000	1196.28	1197.75	1.246	1196.84	1198.39	0.24	1198.39	26	Manhole
28	CB201 TO CB322	20.02	18	Cir	148.797	1160.58	1172.48	7.997	1161.44	1173.95	n/a	1173.95	5	Manhole
29	CB322 TO CB323	19.59	18	Cir	112.435	1172.68	1174.08	1.245	1174.18*	1177.52*	1.91	1179.43	28	Manhole
30	CB323 TO CB325	11.74	18	Cir	246.683	1174.28	1185.08	4.378	1179.43	1186.38	n/a	1186.38 j	29	Manhole
31	CB325 TO CB327	6.49	18	Cir	186.000	1185.28	1193.07	4.188	1186.38	1194.06	n/a	1194.06 j	30	Manhole
32	CB327 TO STMH317	3.76	18	Cir	118.000	1193.27	1194.74	1.246	1194.06	1195.48	n/a	1195.48 j	31	Manhole
33	CB327 TO CB328	1.13	15	Cir	18.001	1193.32	1194.95	9.055	1194.06	1195.37	n/a	1195.37 j	31	Manhole
34	CB325 TO STMH316	3.46	18	Cir	118.000	1185.28	1186.75	1.246	1186.38	1187.46	n/a	1187.46 j	30	Manhole
35	CB325 TO CB326	1.16	15	Cir	18.001	1185.33	1186.58	6.944	1186.38	1187.00	n/a	1187.00 j	30	Manhole
36	CB237 TO CB238	3.31	18	Cir	18.001	1181.90	1182.08	1.000	1182.87	1182.77	0.04	1182.77	24	Manhole
37	CB238 TO STMH215	2.02	18	Cir	118.000	1182.28	1183.75	1.246	1182.77	1184.29	n/a	1184.29	36	Manhole
38	CB323 TO STMH315	5.75	18	Cir	118.000	1174.28	1175.75	1.246	1179.43*	1179.73*	0.16	1179.89	29	Manhole
39	CB323 TO CB324	1.51	18	Cir	18.001	1174.28	1175.49	6.722	1179.43*	1179.43*	0.01	1179.44	29	Manhole
40	CB210 TO CB211	1.30	15	Cir	18.001	1170.26	1170.99	4.055	1171.47	1171.44	n/a	1171.44 j	11	Manhole
41	CB201 TO CB202	5.56	18	Cir	18.001	1154.77	1157.51	15.222	1158.89	1158.92	0.11	1159.04	5	Manhole
42	CB202 TO STMH204	4.59	18	Cir	40.751	1158.51	1163.46	12.147	1159.04	1164.28	0.23	1164.28	41	Manhole
43	STMH204 TO STMH205	4.68	18	Cir	87.000	1163.66	1164.75	1.253	1164.29	1165.58	n/a	1165.58	42	Manhole
44	CB207 TO CB208	1.27	18	Cir	18.001	1161.73	1161.91	1.000	1165.47*	1165.47*	0.01	1165.48	თ	Manhole
45	CB205 TO CB206	1.89	18	Cir	18.001	1160.24	1160.47	1.278	1163.01*	1163.01*	0.02	1163.03	ω	Manhole
46	CB204 TO STMH206	8.30	18	Cir	118.000	1155.87	1157.05	1.000	1161.34*	1161.96*	0.34	1162.31	7	Manhole
47	EW TO STMH301	44.46	30	Cir	142.514	1122.00	1122.71	0.498	1124.22*	1125.74*	1.24	1126.98	End	Manhole
48	STMH301 TO STMH302	44.60	30	Cir	74.067	1122.91	1123.28	0.500	1126.98*	1127.73*	0.19	1127.92	47	Manhole
Project F	Project File: BASIN 2 - 7-1-21.stm								Number o	Number of lines: 74		Run E	Run Date: 7/1/2021	021

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Report	-
Summary	
Sewer	
torm	

Storr	Storm Sewer Summary Report	Jary	Repor	ىد										Page 3
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ff)	Line Slope (%)	HGL Down (ft)	HGL Up (ff)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49	STMH302 TO STMH303	44.65	18	Cir	74.067	1124.28	1145.48	28.623	1127.92	1146.98	n/a	1146.98 j	48	Manhole
50	STMH303 TO STMH305	34.35	18	Cir	203.955	1146.48	1165.93	9.536	1147.68	1167.43	5.88	1167.43	49	Manhole
51	STMH305 TO CB306	26.69	18	Cir	138.701	1166.13	1172.94	4.910	1167.46	1174.43	n/a	1174.43	50	Manhole
52	CB306 TO CB307	24.91	18	Cir	18.001	1173.14	1173.32	1.000	1174.64*	1175.51*	3.09	1178.60	51	Manhole
53	CB307 TO CB318	2.38	18	Cir	213.358	1179.44	1196.51	8.001	1179.72	1197.09	n/a	1197.09	52	Manhole
54	CB318 TO CB320	1.26	18	Cir	241.600	1196.71	1208.67	4.950	1197.09	1209.09	0.15	1209.09	53	Manhole
55	CB320 TO CB321	0.62	18	Cir	18.001	1208.87	1209.33	2.555	1209.09	1209.62	n/a	1209.62	54	Manhole
56	CB318 TO CB319	0.74	18	Cir	18.001	1196.72	1196.92	1.111	1197.09	1197.24	n/a	1197.24 j	53	Manhole
57	CB307 TO STMH308	17.75	18	Cir	124.850	1173.52	1174.77	1.001	1178.60*	1181.64*	1.57	1183.21	52	Manhole
58	STMH308 TO CB312	11.13	18	Cir	157.357	1174.97	1185.69	6.813	1183.21	1186.97	n/a	1186.97 j	57	Manhole
59	CB312 TO CB313	8.59	18	Cir	18.001	1185.89	1186.07	1.000	1186.97	1187.20	0.20	1187.20	58	Manhole
60	CB313 TO STMH309	6.31	18	Cir	27.247	1186.27	1186.54	0.991	1187.20	1187.51	0.15	1187.51	59	Manhole
61	STMH309 TO STMH310	6.40	18	Cir	92.000	1186.74	1187.89	1.250	1187.51	1188.87	0.43	1188.87	60	Manhole
62	CB307 TO CB308	9.80	18	Cir	116.387	1173.52	1177.56	3.471	1178.60*	1179.46*	0.48	1179.94	52	Manhole
63	CB308 TO CB310	7.16	18	Cir	58.413	1177.76	1178.34	0.993	1179.94*	1180.17*	0.19	1180.36	62	Manhole
64	CB310 TO CB311	5.59	18	Cir	18.001	1178.54	1178.72	1.000	1180.36*	1180.41*	0.02	1180.43	63	Manhole
65	CB311 TO STMH307	3.87	18	Cir	118.000	1178.92	1180.69	1.500	1180.43	1181.44	n/a	1181.44 j	64	Manhole
66	CB308 TO CB309	0.62	18	Cir	18.001	1177.76	1179.38	9.000	1179.94	1179.93	0.02	1179.94	62	Manhole
67	STMH305 TO CB304	4.27	18	Cir	118.000	1166.13	1167.31	1.000	1167.43	1168.10	n/a	1168.10 j	50	Manhole
68	CB304 TO CB305	3.31	18	Cir	21.288	1167.51	1167.72	0.986	1168.10	1168.41	0.16	1168.41	67	Manhole
69	CB305 TO STMH306	2.24	18	Cir	118.000	1167.92	1169.69	1.500	1168.41	1170.26	n/a	1170.26	68	Manhole
70	STMH303 TO CB301	7.26	18	Cir	118.000	1146.48	1152.24	4.881	1147.03	1153.28	n/a	1153.28	49	Manhole
71	CB301 TO CB303	3.31	18	Cir	21.312	1152.44	1154.75	10.839	1153.28	1155.44	n/a	1155.44 j	70	Manhole
72	CB303 TO STMH304	2.24	18	Cir	118.000	1154.95	1157.69	2.322	1155.44	1158.26	n/a	1158.26	71	Manhole
Project	Project File: BASIN 2 - 7-1-21.stm								Number of lines: 74	· lines: 74		Run E	Run Date: 7/1/2021	021

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storr	Storm Sewer Summary Report	lary	Repor	÷										Page 4
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	-ine shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (#)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
73	CB301 TO CB302	2.97	18	Cir	141.603	1152.44	1154.56	1.497	1153.28	1155.21	n/a	1155.21 j	70	Manhole
74	OF TO OS201	10.00	48	Cir	107.664	1110.00	1112.00	1.858	1111.36	1112.92	n/a	1112.92 j	End	Manhole
Project	Project File: BASIN 2 - 7-1-21.stm								Number of lines: 74	f lines: 74		Run	Run Date: 7/1/2021	021
NOTES	NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.	harged (HG	iL above crowi	n).; j - Lin	e contains	hyd. jump.						-		

Storm Sewers v2019.20

Page 1

ら		L		ס		abulatio	•			F	ŀ				ŀ							
Station	Ē	Len	Drng Area		Rnoff	Area x C	U	Tc		Rain T	_	Cap V	Vel	Pipe	<u> </u>	Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line	T o in o		Incr	Total		Incr	Total	Inlet	Syst	-		5	0	Size	Slope D	Du	d	Dn	Up	D	Чр	
		(t t)	(ac)	(ac)	(c))	(min) ((min) ((in/hr) (o	(cfs) (c	(cfs) (t	(ft/s) (i	(in) ('	(%) (f	(ft) ((ft)	(ft)	(ft)	(ft)	(ft)	
-	End	1 30.850	0.00	24.14	00.0	00.0	11.95	0.0	13.1	2.7	91.63	102.4	12.96	36	2.01	1118.00	1118.62	1124.86	1125.36	1121.71	1131.62	EW TO STMH200
N	~	159.537	0.00	24.14	00.0	0.00	11.95	0.0	12.9	7.7	92.17	222.2	13.16	36	9.46	1120.52	1135.61	1127.92	1138.47	1131.62	1149.61	STMH200 TO ST
ю	2	89.872	0.00	24.14	00.0	0.00	11.95	0.0	12.7	7.7	92.48	281.1	16.71	36	15.13 1	1136.61	1150.21	1138.47	1153.07	1149.61	1162.26	STMH201 TO ST
4	ю	67.587	3.76	24.14	0.56	2.11	11.95	5.0	12.6	7.8	92.70	72.47	13.12	36	1.01	1151.21	1151.89	1154.21	1155.32	1162.26	1168.90	STMH202 TO ST
5	4	118.000	0.35	20.38	0.49	0.17	9.84	5.0	12.5	7.8 7	76.76	72.25	10.86	36	1.00	1152.09	1153.27	1155.73	1157.06	1168.90	1171.90	STMH203 TO CB
9	5	134.000 0.19	0.19	13.39	0.47	0.09	6.87	5.0	12.2	7.9	54.01	51.09	7.64	36	0.50 1	1153.47	1154.14	1158.89	1159.64	1171.90	1167.13	CB201 TO CB203
7	9	105.080	0.32	13.20	0.48	0.15	6.78	5.0	11.9	7.9	53.66	50.83	7.59	36	0.49	1154.35	1154.87	1159.86	1160.44	1167.13	1165.56	CB203 TO CB204
ø	2	31.801	0.29	10.82	0.43	0.12	5.78	5.0	11.9	7.9	45.83	144.6	9.50	30	10.60	1155.87	1159.24	1161.34	1161.56	1165.56	1165.47	CB204 TO CB205
თ	ø	128.122	0.15	10.12	0.47	0.07	5.46	5.0	11.6	8.0	43.61	56.75	8.89	30	1.63 1	1159.44	1161.53	1163.01	1164.24	1165.47	1166.91	CB205 TO CB207
10	ი	104.840	0.23	9.73	0.47	0.11	5.26	5.0	11.4	8.0	42.25	80.01	8.97	30	3.24 1	1161.73	1165.13	1165.47	1167.30	1166.91	1170.11	CB207 TO CB209
11	10	151.106	0.27	9.50	0.49	0.13	5.15	5.0	11.2	8.1	41.61	40.75	13.29	24	2.77	1165.33	1169.51	1167.30	1171.47	1170.11	1177.99	CB209 TO CB210
12	1	118.000	0.63	6.46	0.44	0.28	3.86	5.0	11.0	8.1	31.32	23.00	9.97	24	0.88	1169.71	1170.75	1171.71	1173.64	1177.99	1177.62	CB210 TO STMH
13	12	54.596	0.00	5.83	0.00	0.00	3.58	0.0	11.0	8.1	29.11	30.95	16.47	18	7.40 1	1170.95	1174.99	1174.75	1178.33	1177.62	1185.49	STMH207 TO ST
14	13	73.512	2.43	5.83	0.61	1.48	3.58	5.0	10.9	8.1	29.17	69.25	16.51	18	37.06	1175.99	1203.23	1178.96	1204.72	1185.49	1216.23	STMH208 TO ST
15	14	94.000	0.00	3.40	0.00	0.00	2.10	0.0	10.7	8.2	17.17	38.15	15.42	18	11.24 1	1204.23	1214.80	1204.94	1216.24	1216.23	1222.58	STMH209 TO ST
16	15	29.654	0.56	3.40	0.51	0.29	2.10	5.0	10.7	8.2	17.20	11.44	9.73	18	1.01	1215.00	1215.30	1216.50	1217.18	1222.58	1221.30	STMH210 TO CB
17	16	101.400	0.34	2.84	0.47	0.16	1.81	5.0	10.5	8.2	14.94	23.13	8.57	18	4.13	1215.50	1219.69	1218.42	1221.09	1221.30	1225.69	CB212 TO CB213
18	17	249.662 0.18	0.18	2.22	0.55	0.10	1.51	5.0	10.0	8.4	12.64	23.93	7.95	18	4.43	1219.89	1230.94	1221.09	1232.28	1225.69	1236.94	CB213 TO CB215
19	18	177.056	09.0	1.79	0.81	0.49	1.29	5.0	9.6	8.5	10.94	20.07	7.24	18	3.11 1	1231.14	1236.65	1232.28	1237.92	1236.94	1244.65	CB215 TO CB217
20	19	23.492	1.08	1.08	0.68	0.73	0.73	5.0	5.0	9.8	7.22	10.51	7.83	15	2.26 1	1240.31	1240.84	1241.07	1241.91	1244.65	1245.18	CB217 TO CB218
21	19	156.734	0.11	0.11	0.65	0.07	0.07	5.0	5.0	9.8	0.70	8.87	1.70	15	1.61	1236.90	1239.42	1237.92	1239.75	1244.65	1244.14	CB217 TO CB219
22	18	18.001	0.25	0.25	0.48	0.12	0.12	5.0	5.0	9.8	1.18	14.28	2.11	15	4.17 1	1231.19	1231.94	1232.28	1232.37	1236.94	1236.94	CB215 TO CB216
Proie	Proiect File:		BASIN 2 - 7-1-21 stm	21 stm												Number o	Number of lines: 74	-		Run Date:	e. 7/1/2021	
5	1			1110-17												אמוויהפי	UI IIIES. /-	+		רמי רמי	G. 11 11 10	

Storm Sewers v2019.20

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

Page 2

い		D D D D D D D D D D D D D D D D D D D		ם	abulatio							ŀ									-	
Station		Len	Drng Area		Rnoff	Area x C	U	Τc		Rain 7	_	Cap til	Vel	Pipe	<u> </u>	Invert Elev	>	HGL Elev	•	Grnd / Rim El	n Elev	Line ID
Line	To		Incr	Total		Incr	Total	Inlet	Syst	 F		5	_ 07	Size	Slope D	D D	d d	Dn	Up	Dn	Чр	
		(H)	(ac)	(ac)	(c)			(min)	(min) ((in/hr) ((cfs) ((cfs) (i	(ft/s) ((ui)	(%)) (#)	(H)	(t t)	(11)	(tt)	(ft)	
23	17	18.001	0.28	0.28	0.51	0.14	0.14	5.0	5.0	9.8	1.40	14.28	2.27	15	4.17	1219.94	1220.69	1221.09	1221.16	1225.69	1225.69	CB213 TO CB214
24	÷	209.117	0.36	2.47	0.48	0.17	1.03	5.0	7.9	6. 8	9.19	27.24	5.70	18	5.73	1169.71	1181.70	1171.47	1182.87	1177.99	1190.44	CB210 TO CB237
25	24	257.102	0.28	1.31	0.30	0.08	0.50	5.0	6.3	9.4	4.70	26.36	4.28	18	5.37	1181.90	1195.70	1182.87	1196.53	1190.44	1205.57	CB237 TO CB239
26	25	18.001	0.24	1.03	0.52	0.12	0.42	5.0	6.2	9.4	3.93	11.37	4.97	18	1.00	1195.90	1196.08	1196.53	1196.84	1205.57	1205.57	CB239 TO CB240
27	26	118.000	0.79	0.79	0.37	0.29	0.29	5.0	5.0	8.6	2.87	12.70	4.38	18	1.25	1196.28	1197.75	1196.84	1198.39	1205.57	1205.45	CB240 TO STMH
28	5	148.797	0.11	5.23	0.54	0.06	2.22	5.0	7.6	0.6	20.02	32.17	15.29	18	8.00	1160.58	1172.48	1161.44	1173.95	1171.90	1178.53	CB201 TO CB322
29	28	112.435	0.32	5.12	0.48	0.15	2.16	5.0	7.4	9.1	19.59	12.69	11.09	18	1.25	1172.68	1174.08	1174.18	1177.52	1178.53	1183.49	CB322 TO CB323
30	29	246.683	0.24	2.90	0.49	0.12	1.27	5.0	6.8	9.3	11.74	23.80	6.93	18	4.38	1174.28	1185.08	1179.43	1186.38	1183.49	1194.58	CB323 TO CB325
31	30	186.000	0.33	1.54	0.56	0.18	0.68	5.0	5.9	9.5	6.49	23.28	4.97	18	4.19	1185.28	1193.07	1186.38	1194.06	1194.58	1202.95	CB325 TO CB327
32	31	118.000	0.98	0.98	0.39	0.38	0.38	5.0	5.0	8.6	3.76	12.70	4.17	18	1.25	1193.27	1194.74	1194.06	1195.48	1202.95	1201.93	CB327 TO STMH
33	31	18.001	0.23	0.23	0.50	0.12	0.12	5.0	5.0	9.8	1.13	21.05	2.32	15	9.06	1193.32	1194.95	1194.06	1195.37	1202.95	1202.95	CB327 TO CB328
34	30	118.000	0.88	0.88	0.40	0.35	0.35	5.0	5.0	8.0	3.46	12.70	3.35	18	1.25	1185.28	1186.75	1186.38	1187.46	1194.58	1193.54	CB325 TO STMH
35	30	18.001	0.24	0.24	0.49	0.12	0.12	5.0	5.0	9.8	1.16	18.43	2.10	15	6.94	1185.33	1186.58	1186.38	1187.00	1194.58	1194.58	CB325 TO CB326
36	24	18.001	0.31	0.80	0.49	0.15	0.36	5.0	6.7	9.3	3.31	11.37	3.44	18	1.00	1181.90	1182.08	1182.87	1182.77	1190.44	1190.44	CB237 TO CB238
37	36	118.000	0.49	0.49	0.42	0.21	0.21	5.0	5.0	8.0	2.02	12.70	3.78	18	1.25	1182.28	1183.75	1182.77	1184.29	1190.44	1190.83	CB238 TO STMH
38	29	118.000	1.58	1.58	0.37	0.58	0.58	5.0	5.0	8.6	5.75	12.70	3.25	18	1.25	1174.28	1175.75	1179.43	1179.73	1183.49	1183.10	CB323 TO STMH
39	29	18.001	0.32	0.32	0.48	0.15	0.15	5.0	5.0	9.8	1.51	29.49	0.85	18	6.72	1174.28	1175.49	1179.43	1179.43	1183.49	1183.49	CB323 TO CB324
40	11	18.001	0.30	0.30	0.44	0.13	0.13	5.0	5.0	9.8	1.30	14.09	2.17	15	4.06	1170.26	1170.99	1171.47	1171.44	1177.99	1177.99	CB210 TO CB211
41	5	18.001	0.22	1.41	0.48	0.11	0.58	5.0	5.8	9.6	5.56	44.38	3.18	18	15.22	1154.77	1157.51	1158.89	1158.92	1171.90	1171.90	CB201 TO CB202
42	41	40.751	0.00	1.19	0.00	0.00	0.48	0.0	5.5	9.6	4.59	39.65	6.46	18	12.15	1158.51	1163.46	1159.04	1164.28	1171.90	1173.77	CB202 TO STMH
43	42	87.000	1.19	1.19	0.40	0.48	0.48	5.0	5.0	8.6 8.6	4.68	12.73	5.66	18	1.25	1163.66	1164.75	1164.29	1165.58	1173.77	1172.35	STMH204 TO ST
44	o	18.001	0.24	0.24	0.54	0.13	0.13	5.0	5.0	9.8 8.	1.27	11.38	0.72	18	1.00	1161.73	1161.91	1165.47	1165.47	1166.91	1166.91	CB207 TO CB208
Proje	Project File:	BASIN 2 - 7-1-21.stm	2 - 7-1-2	1.stm												Number (Number of lines: 74			Run Date	Run Date: 7/1/2021	-

Storm Sewers v2019.20

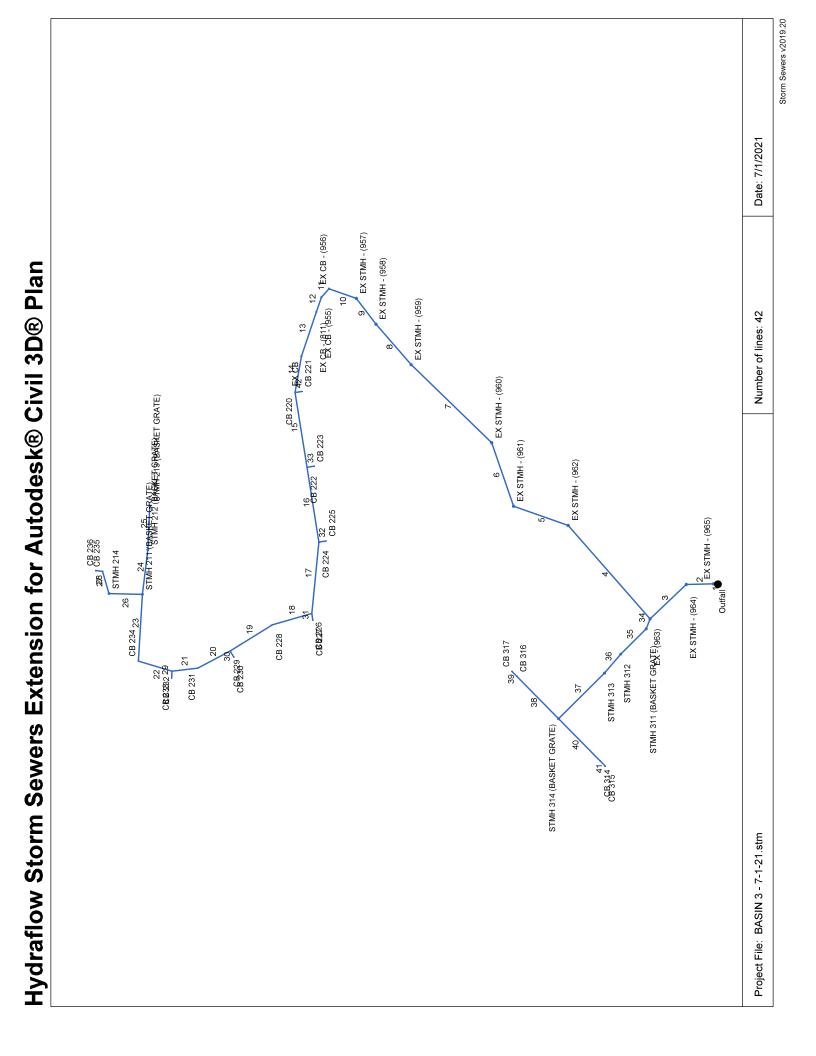
NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

กิ		I		-		avulation	_															
Sta	Station	Len	Drng Area		Rnoff	Area x C	U	Tc	`	Rain	Total C	_	Vel	Pipe		Invert Elev	2	HGL Elev	>	Grnd / Rin	/ Rim Elev	Line ID
Line	e To Lino	1	Incr	Total	соец	Incr	Total	Inlet	Syst				_ •,	Size (Slope I	Dn	Up	Dn	Up	Dn	Чр	
		(L	(ac)	(ac)	(c)			(min)	(min) ((in/hr) ((cfs) ((cfs) ((ft/s) ((in) ((%)	(t t)	(11)	(ft)	(t t)	(ft)	(f t)	
45	8	18.001	0.41	0.41	0.47	0.19	0.19	5.0	5.0	9.8	1.89	12.86	1.07	18	1.28	1160.24	1160.47	1163.01	1163.01	1165.47	1165.47	CB205 TO CB206
46	7	118.000	2.06	2.06	0.41	0.84	0.84	5.0	5.0	9.8	8.30	11.38	4.70	18	1.00	1155.87	1157.05	1161.34	1161.96	1165.56	1166.00	CB204 TO STMH
47	End	142.514	00.0	11.07	0.00	0.00	5.95	0.0	14.1	7.5	44.46	31.36	9.35	30	0.50	1122.00	1122.71	1124.22	1125.74	1125.21	1129.04	EW TO STMH301
48	47	74.067	0.00	11.07	0.00	0.00	5.95	0.0	14.0	7.5	44.60	31.40	9.09	30	0.50	1122.91	1123.28	1126.98	1127.73	1129.04	1135.99	STMH301 TO ST
49	48	74.067	1.19	11.07	0.51	0.61	5.95	5.0	13.9	7.5	44.65	60.86	25.27	18	28.62	1124.28	1145.48	1127.92	1146.98	1135.99	1160.30	STMH302 TO ST
50	49	203.955	0.86	8.45	0.66	0.57	4.56	5.0	13.8	7.5	34.35	35.13	21.05	18	9.54	1146.48	1165.93	1147.68	1167.43	1160.30	1176.69	STMH303 TO ST
51	50	138.701	0.40	6.81	0.59	0.24	3.53	5.0	13.6	7.6	26.69	25.21	15.61	18	4.91	1166.13	1172.94	1167.46	1174.43	1176.69	1190.12	STMH305 TO CB
52	51	18.001	0.16	6.41	0.54	0.09	3.30	5.0	13.6	7.6	24.91	11.37	14.10	18	1.00	1173.14	1173.32	1174.64	1175.51	1190.12	1190.12	CB306 TO CB307
53	52	213.358	0.14	0.46	0.63	0.09	0.30	5.0	11.4	8.0	2.38	32.18	7.19	18	8.00	1179.44	1196.51	1179.72	1197.09	1190.12	1202.92	CB307 TO CB318
54	53	241.600	0.10	0.20	0.69	0.07	0.13	5.0	5.9	9.5	1.26	25.31	3.33	18	4.95	1196.71	1208.67	1197.09	1209.09	1202.92	1217.33	CB318 TO CB320
55	54	18.001	0.10	0.10	0.63	0.06	0.06	5.0	5.0	9.8	0.62	18.19	3.21	18	2.56	1208.87	1209.33	1209.09	1209.62	1217.33	1217.33	CB320 TO CB321
56	53	18.001	0.12	0.12	0.63	0.08	0.08	5.0	5.0	9.8	0.74	11.99	2.43	18	1.11	1196.72	1196.92	1197.09	1197.24	1202.92	1202.92	CB318 TO CB319
57	52	124.850	1.30	3.73	0.55	0.72	1.87	5.0	6.0	9.5	17.75	11.38	10.05	18	1.00	1173.52	1174.77	1178.60	1181.64	1190.12	1189.90	CB307 TO STMH
58	57	157.357	0.41	2.43	0.65	0.27	1.16	5.0	5.6	9.6	11.13	29.69	6.63	18	6.81	1174.97	1185.69	1183.21	1186.97	1189.90	1198.01	STMH308 TO CB
59	58	18.001	0.47	2.02	0.51	0.24	0.89	5.0	5.6	9.6	8.59	11.37	6.16	18	1.00	1185.89	1186.07	1186.97	1187.20	1198.01	1198.01	CB312 TO CB313
60	59	27.247	00.0	1.55	00.0	0.00	0.65	0.0	5.4	9.7	6.31	11.32	5.33	18	0.99	1186.27	1186.54	1187.20	1187.51	1198.01	1198.63	CB313 TO STMH
61	60	92.000	1.55	1.55	0.42	0.65	0.65	5.0	5.0	9.8	6.40	12.72	6.13	18	1.25	1186.74	1187.89	1187.51	1188.87	1198.63	1198.00	STMH309 TO ST
62	52	116.387	0.59	2.06	0.38	0.22	1.04	5.0	6.2	9.4	9.80	21.20	5.55	18	3.47	1173.52	1177.56	1178.60	1179.46	1190.12	1185.38	CB307 TO CB308
63	62	58.413	0.32	1.39	0.52	0.17	0.75	5.0	6.0	9.5	7.16	11.34	4.05	18	0.99	1177.76	1178.34	1179.94	1180.17	1185.38	1189.08	CB308 TO CB310
64	63	18.001	0.38	1.07	0.51	0.19	0.59	5.0	5.9	9.5	5.59	11.37	3.17	18	1.00	1178.54	1178.72	1180.36	1180.41	1189.08	1189.08	CB310 TO CB311
65	64	118.000	0.69	0.69	0.57	0.39	0.39	5.0	5.0	9.8	3.87	13.93	3.28	18	1.50	1178.92	1180.69	1180.43	1181.44	1189.08	1188.12	CB311 TO STMH
66	62	18.001	0.08	0.08	0.79	0.06	0.06	5.0	5.0	9.8	0.62	34.13	0.71	18	0.00	1177.76	1179.38	1179.94	1179.93	1185.38	1185.38	CB308 TO CB309
<u> </u>	oject File	Project File: BASIN 2 - 7-1-21.stm	2 - 7-1-2	1.stm												Number	Number of lines: 74			Run Date	Run Date: 7/1/2021	-

Storm Sewers v2019.20

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

Page 3


	┝
_	
tion	
ula	
Tab	
'er '	
Sewel	
E	
tor	
S	L

Station	Len	Drng Area	rea	Rnoff	Area x C	U	Lc		Rain		Cap	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line To	4	Incr	Total	соец	Incr	Total	Inlet	Syst				_	Size S	Slope D	D	Чр	Dn	dD	Dn	ЧÞ	
<u>.</u>	(L)	(ac)	(ac)	(c)			(min)	(min) ((in/hr)	(cfs) ((cfs) ((ft/s) ((in) (⁽	(%)	(#)	(ft)	(t t)	(ff)	(ft)	(tt)	
09 /9		118.000 0.18	0.78	66.0	0.11	0.46	p.c	6.7	ю. Э	4.27	11.38	3.57	18	1.00	1166.13	1166.13 1167.31 1167.43	1167.43		1168.10 11/6.69 11//.61		
68 67	7 21.288	8 0.25	0.60	0.51	0.13	0.36	5.0	6.6	9.3	3.31	11.30	4.63	18	0.99	1167.51	1167.51 1167.72	1168.10	1168.41	1177.61	1176.93	CB304 TO CB305
69 68	3 118.000	0 0.35	0.35	0.65	0.23	0.23	5.0	5.0	9.8	2.24	13.93	4.05	18	1.50	1167.92	1169.69	1168.41	1170.26	1176.93	1175.89	CB305 TO STMH
70 49		118.000 0.25	1.43	0.51	0.13	0.78	5.0	6.7	9.3	7.26	25.13	8.92	18	4.88	1146.48	1146.48 1152.24 1147.03	1147.03	1153.28		1160.30 1166.32	STMH303 TO CB
71 70	0 21.312	2 0.25	09.0	0.51	0.13	0.36	5.0	6.6	9.3	3.31	37.45	3.69	18	10.84	1152.44	1152.44 1154.75	1153.28	1155.44	1166.32	1165.75	CB301 TO CB303
72 71		118.000 0.35	0.35	0.65	0.23	0.23	5.0	5.0	9.8	2.24	17.34	4.05	18	2.32	1154.95	1154.95 1157.69	1155.44	1158.26		1165.75 1164.58	CB303 TO STMH
73 70	0 141.603	3 0.58	0.58	0.52	0.30	0.30	5.0	5.0	9.8	2.97	13.92	3.45	18	1.50	1152.44	1152.44 1154.56	1153.28	1155.21	1166.32	1159.41	CB301 TO CB302
74 Ei	End 107.66	107.664 0.00	00.0	00.0	0.00	0.00	5.0	5.0	0.0	10.00	212.1	3.62	48	1.86	1110.00	1110.00 1112.00 1111.36	1111.36	1112.92		1114.74 1120.00	OF TO OS201
Project F	Project File: BASIN 2 - 7-1-21.stm	12-7-1-2	21.stm												Number	Number of lines: 74	4		Run Dat	Run Date: 7/1/2021	

Storm Sewers v2019.20

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = Yrs. 100 ; c = cir e = ellip b = box

100-yr Storm Sewer Analysis Tributary to Basin 3

Report	
2	
a	
m	
_	
Ξ	
ົດ	
Ľ	
e e	
Ş	
Ð	
တ	
Ľ,	
5	
¥	

Storr	Storm Sewer Summary	l dry l	Report	ىد										Page 1
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	(#) HGL (#)	Minor loss (ft)	HGL Junct (ff)	Dns Line No.	Junction Type
~	EX - (2151)	17.06	48	Cir	11.837	1109.21	1111.13	16.221	1111.82	1112.34	n/a	1112.34	End	Manhole
7	EX - (2150)	17.27	48	Cir	72.030	1112.49	1122.30	13.619	1112.99	1123.52	n/a	1123.52	-	Manhole
ю	EX - (2149)	17.66	48	Cir	132.245	1123.00	1165.85	32.402	1123.52	1167.08	n/a	1167.08	7	Manhole
4	EX - (2148)	11.38	48	Cir	328.625	1166.01	1169.03	0.919	1167.08	1170.01	n/a	1170.01 j	ო	Manhole
5	EX - (2147)	11.98	48	Cir	153.196	1169.22	1170.01	0.516	1170.14	1171.02	0.29	1171.02	4	Manhole
9	EX - (2146)	12.76	48	Cir	177.419	1170.30	1172.14	1.037	1171.10	1173.18	0.19	1173.18	ъ	Manhole
7	EX - (2145)	14.30	48	Cir	296.795	1172.14	1175.16	1.018	1173.18	1176.27	n/a	1176.27	9	Manhole
80	EX - (2144)	15.20	48	Cir	141.829	1175.23	1176.40	0.825	1176.27	1177.54	n/a	1177.54	7	Manhole
თ	EX - (2143)	15.81	48	Cir	85.934	1176.51	1177.41	1.047	1177.54	1178.58	n/a	1178.58	ø	Manhole
10	EX - (2142)	16.40	48	Cir	76.692	1177.41	1178.20	1.030	1178.58	1179.39	n/a	1179.39	თ	Manhole
11	EX - (2141)	16.49	30	Cir	30.404	1178.40	1178.70	0.986	1179.51	1180.07	n/a	1180.07	10	Manhole
12	EX - (2140)	16.62	30	Cir	40.956	1178.90	1181.28	5.811	1180.07	1182.66	n/a	1182.66	11	Manhole
13	Pipe - (1503)	17.02	30	Cir	123.648	1181.37	1184.68	2.677	1182.66	1186.07	0.11	1186.07	12	Manhole
14	EX CB to CB 220	17.23	24	Cir	97.008	1184.96	1191.90	7.154	1186.07	1193.40	1.09	1193.40	13	Generic
15	CB 220 to CB 222	16.63	18	Cir	200.000	1192.10	1205.90	6.900	1193.40	1207.33	n/a	1207.33	14	Generic
16	CB 222 to CB 224	14.31	18	Cir	200.000	1206.10	1212.55	3.225	1207.33	1213.94	n/a	1213.94	15	Generic
17	CB 224 to CB 226	13.75	18	Cir	189.253	1212.75	1214.65	1.004	1214.25*	1217.02*	1.44	1218.46	16	Generic
18	CB 226 to CB 228	11.17	18	Cir	108.631	1214.85	1219.28	4.078	1218.46	1220.56	n/a	1220.56 j	17	Generic
19	CB 228 to CB 229	10.00	18	Cir	131.788	1219.48	1226.10	5.023	1220.56	1227.32	n/a	1227.32	18	Generic
20	CB 229 to CB 231	8.59	18	Cir	97.002	1226.30	1233.06	6.969	1227.32	1234.19	n/a	1234.19	19	Generic
21	CB 231 to CB 232	8.20	18	Cir	68.479	1233.26	1235.37	3.081	1234.19	1236.48	0.79	1236.48	20	Generic
22	CB 232 to CB 234	7.50	18	Cir	93.205	1235.57	1239.97	4.721	1236.48	1241.03	0.72	1241.03	21	Generic
23	CB 234 to STMH 211	6.06	18	Cir	176.662	1240.17	1249.01	5.004	1241.03	1249.96	0.41	1249.96	22	Manhole
24	STMH 211 to STMH 212	2.98	18	Cir	118.544	1249.21	1256.74	6.352	1249.96	1257.40	n/a	1257.40 j	23	Manhole
Project	Project File: BASIN 3 - 7-1-21.stm								Number of lines: 42	f lines: 42		Run	Run Date: 7/1/2021	021

Storm Sewers v2019.20

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

<u> </u>	
0	
Ō	
0	
$\tilde{\mathbf{v}}$	
Ľ	
>	
G	
Ч	
З	
=	
~	
0)	
5	
Φ	
Ž	
~	
U	
0)	
C	
Ľ,	
0	
÷	

Storr	Storm Sewer Summary	lary	Report	ىپ										Page 2
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	STMH 212 to STMH 213	1.84	18	Cir	115.567	1256.94	1259.80	2.475	1257.40	1260.31	n/a	1260.31	24	Manhole
26	STMH 211 to STMH 214	2.52	18	Cir	88.578	1249.21	1255.19	6.751	1249.96	1255.79	n/a	1255.79 j	23	Manhole
27	STMH 214 to CB 235	2.62	18	Cir	60.988	1255.39	1257.83	4.001	1255.79	1258.44	n/a	1258.44	26	Generic
28	CB 235 to CB 236	1.28	18	Cir	18.001	1258.03	1259.83	9.999	1258.44	1260.25	n/a	1260.25	27	Generic
29	CB 232 to CB 233	0.63	18	Cir	18.001	1235.57	1236.36	4.389	1236.48	1236.66	n/a	1236.66 j	21	Generic
30	CB 229 to CB 230	0.98	18	Cir	18.001	1226.30	1227.08	4.333	1227.32	1227.45	n/a	1227.45 j	19	Generic
31	CB 226 to CB 227	1.60	18	Cir	18.001	1214.85	1215.63	4.333	1218.46*	1218.46*	0.01	1218.47	17	Generic
32	CB 224 to CB 225	0.58	18	Cir	18.001	1212.75	1214.43	9.333	1213.94	1214.71	n/a	1214.71 j	16	Generic
33	CB 222 to CB 223	0.56	18	Cir	18.001	1206.10	1206.90	4.445	1207.33	1207.18	0.10	1207.18	15	Generic
34	EX INLET MH to STMH 311	13.90	18	Cir	28.153	1170.00	1180.00	35.521	1170.46	1181.38	0.49	1181.38	т	Manhole
35	STMH 311 to STMH 312	7.98	18	Cir	95.000	1180.20	1187.70	7.895	1181.38	1188.79	n/a	1188.79 j	34	Manhole
36	STMH 312 to STMH 313	8.06	18	Cir	66.217	1187.90	1188.56	0.997	1188.83	1189.66	0.08	1189.66	35	Manhole
37	STMH 313 to STMH 314	8.29	18	Cir	171.111	1188.76	1190.47	0.999	1189.71	1191.58	n/a	1191.58	36	Manhole
38	STMH 314 to CB 316	2.21	18	Cir	157.358	1190.67	1196.53	3.724	1191.58	1197.09	n/a	1197.09 j	37	Generic
39	CB 316 to CB 317	1.31	18	Cir	18.000	1196.73	1197.53	4.445	1197.09	1197.96	0.15	1197.96	38	Generic
40	STMH 314 to CB 314	4.03	18	Cir	157.358	1190.67	1192.24	0.998	1191.58	1193.01	n/a	1193.01 j	37	Generic
41	CB 314 to CB 315	2.34	18	Cir	18.001	1192.44	1193.24	4.445	1193.01	1193.82	0.22	1193.82	40	Generic
42	CB 220 to CB 221	0.58	18	Cir	18.001	1192.10	1192.90	4.445	1193.40	1193.18	0.10	1193.18	14	Generic
Project	Project File: BASIN 3 - 7-1-21.stm								Number of lines: 42	f lines: 42		Run [Run Date: 7/1/2021	021

Storm Sewers v2019.20

NOTES: Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

CB 224 to CB 226 CB 226 to CB 228 CB 228 to CB 229 CB 231 to CB 232 CB 232 to CB 234 CB 220 to CB 222 CB 222 to CB 224 EX CB to CB 220 CB 229 to CB 231 Pipe - (1503) EX - (2151) - (2150) EX - (2147) EX - (2146) EX - (2144) EX - (2143) EX - (2142) EX - (2141) EX - (2140) EX - (2149) EX - (2148) EX - (2145) Line ID Ж 7/1/2021 1221.63 1195.43 1197.60 1197.43 1190.34 1211.90 1219.43 1238.04 1149.38 1195.08 1197.37 1198.59 1198.03 1197.90 1232.08 1242.38 1152.67 1196.69 1197.72 1197.78 1224.28 1248.27 Grnd / Rim Elev £ ď Date: 1219.43 1195.43 1197.78 1197.60 1197.43 1141.29 1195.08 1196.69 1198.59 1198.03 1197.72 1190.34 1197.90 1211.90 1224.28 1232.08 1238.04 1242.38 1149.38 1152.67 1197.37 63 1221. Run ď £ 1234.19 1182.66 1193.40 1207.33 1217.02 1167.08 1170.01 1173.18 1186.07 1227.32 1236.48 1241.03 1112.34 52 1171.02 1176.27 1177.54 1178.58 1179.39 1180.07 1213.94 56 1123. 1220. ٩U £ Elev 1236.48 1170.14 1179.51 1123.52 1167.08 1173.18 1180.07 1193.40 1227.32 1234.19 1111.82 1171.10 1176.27 1182.66 1186.07 1207.33 1214.25 1220.56 1112.99 1177.54 1178.58 1218.46 HGL ۵ £ 42 1239.97 1111.13 1165.85 1169.03 1170.01 1172.14 1175.16 1178.70 1181.28 1205.90 1212.55 1226.10 1233.06 1176.40 1178.20 1184.68 1191.90 1214.65 1219.28 1122.30 1177.41 1235.37 Number of lines: ď £ Invert Elev 1176.51 1212.75 1233.26 1235.57 1109.21 1112.49 1123.00 1166.01 1169.22 1170.30 1172.14 1175.23 1177.41 1178.40 1178.90 1181.37 1184.96 1192.10 1206.10 1214.85 1219.48 226.30 å £ 16.22 13.62 32.40 Slope 0.92 0.52 1.02 0.82 1.03 0.99 2.68 7.15 6.90 3.23 5.02 3.08 4.72 1.04 1.05 1.00 4.08 5.81 6.97 %) Pipe 18 3 3 48 48 48 48 48 48 48 48 48 48 30 30 30 38 18 18 3 18 Size 24 (in) 12.33 11.91 6.16 4.47 6.02 5.32 6.92 6.68 9.90 8.79 7.78 6.47 3.64 5.14 6.94 6.36 5.68 6.37 8.21 6.64 5.27 5.51 (ft/s) Vel 578.5 144.9 147.0 145.8 530.1 817.7 103.2 146.3 72.69 20.43 11.40 25.50 30.03 137.7 40.73 98.86 65.54 29.88 19.97 72 6 (cfs) Cap full 130. Š 2 16.49 17.06 17.27 17.66 11.38 11.98 12.76 14.30 15.20 16.40 16.62 17.02 17.23 16.63 13.75 11.17 10.00 15.81 14.31 Total flow 8.59 7.50 (cfs) 8.20 (in/hr) Rain (I) 3.6 4 .0 5.9 6.0 6.0 6.2 6.3 6.6 6.9 7.0 4.6 5.2 5.5 6.2 6.6 6.8 3.7 3.7 4. 6.4 6.7 5.7 (min) 24.0 21.3 12.8 12.6 11.5 32.9 15.0 13.8 12.4 10.0 31.7 11.8 11.1 10.3 33.7 17.1 10.7 Syst 9.6 <u>9</u>.3 8.7 9.1 26. ч (min) Inlet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 5.0 Total 4.73 4.73 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.62 2.22 2.10 1.68 1.49 1.19 4.73 1.26 1.07 Area x C Storm Sewer Tabulation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.05 0.23 0.20 0.11 0.24 0.00 0.00 0.07 0.04 0.07 Incr Rnoff coeff 0.00 0.60 0.33 0.35 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.54 0.41 0.36 0.37 <u></u> Total 9.95 9.95 9.95 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.30 5.17 4.96 3.40 2.85 2.66 2.44 3.97 BASIN 3 - 7-1-21.stm (ac) Drng Area 0.00 0.00 0.19 0.58 0.00 0.00 0.00 0.00 0.11 0.09 0.63 0.00 0.00 0.57 0.08 32.245 0.00 328.625 0.00 53.196 0.00 296.795 0.00 0.00 200.000 1.02 0.31 Incr (ac) 131.788 0 .829 23.648 200.000 89.253 177.419 11.837 72.030 85.934 30.404 40.956 97.008 08.631 97.002 68.479 205 76.692 Len 4 £ 33. Project File: End To Line 5 9 7 42 33 4 15 16 38 20 17 3 2 ო S ω ω თ ~ 4 \sim Station Line 5 7 12 13 4 15 16 17 18 19 20 22 2 S ω თ . 2 ო 4 ശ \sim

Storm Sewers v2019.20

e = ellip b = box Return period = Yrs. 100 ; c = cir NOTES:Intensity = 41.42 / (Inlet time + 5.80) ^ 0.66;

-
لسك.
0
_
\mathbf{D}
σ
H
-
<u> </u>
D
_
<
U.
40
S
••
_
~
\frown

Stc	J rm	Sei	wer	Storm Sewer Tabulation	oula	Itio	-															Page 2
Station	2	Len	Drng Area		Rnoff	Area x C	υ	۲		Rain T	_	Cap f:1	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	n Elev	Line ID
Line	To		Incr	Total		Incr	Total	Inlet	Syst	-		5		Size	Slope D	Du	Up	Dn	d	Du	dD	
		(ft)	(ac)	(ac)	(c)		-	(min)	(min)	(in/hr) ((cfs) ((t) (t	(ft/s) (i	(in) (⁽	(%)	(ft)	(ft)	(t t)	(tt)	(ft)	(ft)	
50	66	176 662	0 35	1 86	7£ 0	0 13	0.83	5 0	ο 2	4 E Z	909	75 45	5 46	18	200	1240 17	1249.01	201721	1249 96	1248.27	1761 76	CB 234 to STMH
2	?			88 0		0 1 C	0.30		ο α 			28.67	5 <u>7</u> 0			1010101	1756 74	1240.06				STMH 211 to ST
7 4	S			0.0	0 4.	2.0	0.03	D.C	0.0			10.02	o./.c			1249.21	4/.0021	1249.90				
25	24	115.567	0.46	0.46	0.47	0.22	0.22	5.0	5.0	8.5	1.84	17.90	3.77	18	2.47	1256.94	1259.80	1257.40	1260.31	1267.52	1270.19	STMH 212 to ST
26	23	88.578	0.00	0.63	0.00	0.00	0.32	0.0	6.1	8.0	2.52	29.56	3.33	18	6.75	1249.21	1255.19	1249.96	1255.79	1261.76	1262.49	STMH 211 to ST
27	26	60.988	0.33	0.63	0.50	0.17	0.32	5.0	5.4	8.3	2.62	22.75	5.38	18	4.00	1255.39	1257.83	1255.79	1258.44	1262.49	1264.83	STMH 214 to CB
28	27	18.001	0:30	0.30	0.50	0.15	0.15	5.0	5.0	8.5	1.28	35.97	3.18	18	10.00	1258.03	1259.83	1258.44	1260.25	1264.83	1264.83	CB 235 to CB 236
29	21	18.001	0.14	0.14	0.53	0.07	0.07	5.0	5.0	8.5	0.63	23.83	1.57	18	4.39	1235.57	1236.36	1236.48	1236.66	1242.38	1242.36	CB 232 to CB 233
30	19	18.001	0.24	0.24	0.48	0.12	0.12	5.0	5.0	8.5	0.98	23.68	1.84	18	4.33	1226.30	1227.08	1227.32	1227.45	1232.08	1232.08	CB 229 to CB 230
31	17	18.001	0.36	0.36	0.52	0.19	0.19	5.0	5.0	8.5	1.60	23.68	06.0	18	4.33	1214.85	1215.63	1218.46	1218.46	1221.63	1221.63	CB 226 to CB 227
32	16	18.001	0.12	0.12	0.57	0.07	0.07	5.0	5.0	8.5	0.58	34.75	1.46	18	9.33	1212.75	1214.43	1213.94	1214.71	1219.43	1219.43	CB 224 to CB 225
33	15	18.001	0.11	0.11	09.0	0.07	0.07	5.0	5.0	8.5	0.56	23.98	1.43	18	4.44	1206.10	1206.90	1207.33	1207.18	1211.90	1211.90	CB 222 to CB 223
34	ю	28.153	1.19	3.42	0.72	0.86	1.97	5.0	8.6	7.1	13.90	67.80	19.17	18	35.52	1170.00	1180.00	1170.46	1181.38	1195.08	1202.12	EX INLET MH to
35	34	95.000	0.00	2.23	0.00	00.0	1.11	0.0	8.3	7.2	7.98	31.96	5.57	18	7.89	1180.20	1187.70	1181.38	1188.79	1202.12	1207.54	STMH 311 to ST
36	35	66.217	0.00	2.23	0.00	00.0	1.11	0.0	8.0	7.2	8.06	11.36	6.39	18	1.00	1187.90	1188.56	1188.83	1189.66	1207.54	1207.17	STMH 312 to ST
37	36	171.111	0.82	2.23	0.45	0.37	1.11	5.0	7.5	7.4	8.29	11.37	6.46	18	1.00	1188.76	1190.47	1189.71	1191.58	1207.17	1198.94	STMH 313 to ST
38	37	157.358	0.20	0.52	0.56	0.11	0.27	5.0	5.4	8.3	2.21	21.95	2.81	18	3.72	1190.67	1196.53	1191.58	1197.09	1198.94	1203.53	STMH 314 to CB
39	38	18.000	0.32	0.32	0.48	0.15	0.15	5.0	5.0	8.5	1.31	23.98	3.57	18	4.44	1196.73	1197.53	1197.09	1197.96	1203.53	1203.53	CB 316 to CB 317
40	37	157.358	0.33	0.89	0.62	0.20	0.48	5.0	5.2	8.4	4.03	11.36	4.00	18	1.00	1190.67	1192.24	1191.58	1193.01	1198.94	1199.24	STMH 314 to CB
41	40	18.001	0.56	0.56	0.49	0.27	0.27	5.0	5.0	8.5	2.34	23.98	3.77	18	4.44	1192.44	1193.24	1193.01	1193.82	1199.24	1199.24	CB 314 to CB 315
42	14	18.001	0.12	0.12	0.57	0.07	0.07	5.0	5.0	8.5	0.58	23.98	1.44	18	4.44	1192.10	1192.90	1193.40	1193.18	1197.90	1197.90	CB 220 to CB 221
Proje	sct File:	Project File: BASIN 3 - 7-1-21.stm	3 - 7-1-2	1.stm												Number	Number of lines: 42	5		Run Dat	Run Date: 7/1/2021	_

NOTES:Intensity = 41.42 / (Inlet time + 5.80) ^ 0.66; Return period = Yrs. 100 ; c = cir e = ellip b = box

Storm Sewers v2019.20

NOAA Atlas 14, Volume 2, Version 3 Location name: Washington, Pennsylvania, USA* Latitude: 40.2047°, Longitude: -80.2083° Elevation: 1121 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	S-based p	oint preci	pitation fr	equency	estimates	with 90%	onfider	nce interv	als (in inc	hes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.317 (0.285-0.352)	0.378 (0.341-0.420)	0.458 (0.412-0.509)	0.518 (0.465-0.574)	0.596 (0.533-0.660)	0.656 (0.585-0.724)	0.712 (0.633-0.786)	0.770 (0.681-0.849)	0.849 (0.747-0.934)	0.905 (0.794-0.996)
10-min	0.492 (0.443-0.547)	0.591 (0.532-0.656)	0.712 (0.640-0.791)	0.800 (0.717-0.886)	0.912 (0.815-1.01)	0.994 (0.887-1.10)	1.07 (0.953-1.18)	1.15 (1.02-1.27)	1.25 (1.10-1.37)	1.32 (1.16-1.45)
15-min	0.604 (0.543-0.670)	0.722 (0.651-0.802)	0.875 (0.786-0.971)	0.984 (0.882-1.09)	1.13 (1.01-1.25)	1.23 (1.10-1.36)	1.33 (1.18-1.47)	1.43 (1.26-1.58)	1.56 (1.37-1.71)	1.65 (1.45-1.81)
30-min	0.799 (0.718-0.887)	0.967 (0.871-1.07)	1.20 (1.08-1.33)	1.37 (1.23-1.51)	1.59 (1.42-1.76)	1.76 (1.57-1.94)	1.92 (1.71-2.12)	2.09 (1.85-2.30)	2.31 (2.03-2.54)	2.47 (2.17-2.72)
60-min	0.975 (0.877-1.08)	1.19 (1.07-1.32)	1.50 (1.35-1.67)	1.74 (1.56-1.93)	2.06 (1.85-2.28)	2.32 (2.07-2.56)	2.57 (2.29-2.84)	2.83 (2.50-3.12)	3.19 (2.81-3.51)	3.47 (3.04-3.82)
2-hr	1.12 (1.01-1.24)	1.36 (1.23-1.51)	1.71 (1.54-1.89)	1.98 (1.78-2.19)	2.36 (2.12-2.60)	2.67 (2.38-2.93)	2.98 (2.65-3.27)	3.30 (2.92-3.61)	3.74 (3.28-4.09)	4.09 (3.57-4.47)
3-hr	1.19 (1.08-1.33)	1.44 (1.30-1.60)	1.81 (1.63-2.01)	2.10 (1.89-2.33)	2.50 (2.25-2.78)	2.83 (2.53-3.13)	3.18 (2.82-3.50)	3.53 (3.12-3.89)	4.03 (3.53-4.42)	4.42 (3.85-4.84)
6-hr	1.42 (1.29-1.57)	1.70 (1.55-1.89)	2.12 (1.93-2.35)	2.47 (2.24-2.72)	2.95 (2.66-3.24)	3.34 (3.00-3.66)	3.75 (3.35-4.10)	4.19 (3.72-4.56)	4.81 (4.22-5.22)	5.30 (4.62-5.74)
12-hr	1.68 (1.53-1.84)	2.00 (1.83-2.19)	2.48 (2.26-2.71)	2.86 (2.60-3.12)	3.42 (3.09-3.72)	3.88 (3.49-4.20)	4.36 (3.90-4.71)	4.88 (4.34-5.25)	5.62 (4.94-6.03)	6.22 (5.43-6.65)
24-hr	1.99 (1.84-2.18)	2.38 (2.19-2.60)	2.91 (2.68-3.18)	3.34 (3.06-3.65)	3.96 (3.62-4.31)	4.46 (4.06-4.85)	4.99 (4.52-5.42)	5.55 (5.01-6.01)	6.33 (5.67-6.85)	6.97 (6.20-7.53)
2-day	2.33 (2.15-2.55)	2.78 (2.56-3.04)	3.37 (3.11-3.68)	3.85 (3.54-4.20)	4.51 (4.14-4.91)	5.06 (4.62-5.50)	5.62 (5.12-6.10)	6.20 (5.62-6.72)	7.00 (6.31-7.59)	7.64 (6.84-8.30)
3-day	2.51 (2.33-2.71)	2.97 (2.76-3.22)	3.58 (3.32-3.87)	4.07 (3.77-4.40)	4.75 (4.39-5.13)	5.30 (4.88-5.71)	5.86 (5.39-6.32)	6.44 (5.90-6.94)	7.25 (6.59-7.80)	7.88 (7.13-8.49)
4-day	2.68 (2.50-2.88)	3.17 (2.96-3.40)	3.79 (3.54-4.07)	4.29 (4.00-4.60)	4.99 (4.64-5.34)	5.54 (5.14-5.93)	6.11 (5.66-6.54)	6.69 (6.18-7.15)	7.49 (6.87-8.01)	8.12 (7.41-8.69)
7-day	3.20 (3.02-3.40)	3.78 (3.56-4.02)	4.46 (4.19-4.74)	5.00 (4.70-5.31)	5.74 (5.38-6.09)	6.32 (5.91-6.70)	6.90 (6.44-7.30)	7.49 (6.96-7.93)	8.28 (7.65-8.75)	8.88 (8.17-9.39)
10-day	3.69 (3.49-3.92)	4.34 (4.11-4.61)	5.07 (4.80-5.39)	5.66 (5.34-6.01)	6.44 (6.07-6.83)	7.04 (6.62-7.46)	7.65 (7.17-8.10)	8.25 (7.71-8.73)	9.03 (8.41-9.57)	9.63 (8.94-10.2)
20-day	5.19 (4.90-5.48)	6.07 (5.74-6.43)	7.00 (6.62-7.41)	7.73 (7.30-8.18)	8.70 (8.20-9.19)	9.44 (8.88-9.96)	10.2 (9.54-10.7)	10.9 (10.2-11.4)	11.8 (11.0-12.4)	12.4 (11.6-13.1)
30-day	6.51 (6.18-6.89)	7.61 (7.22-8.05)	8.69 (8.24-9.20)	9.54 (9.04-10.1)	10.7 (10.1-11.2)	11.5 (10.9-12.1)	12.3 (11.6-13.0)	13.1 (12.3-13.8)	14.1 (13.2-14.9)	14.8 (13.9-15.6)
45-day	8.34 (7.95-8.74)	9.71 (9.27-10.2)	11.0 (10.5-11.5)	11.9 (11.4-12.5)	13.2 (12.5-13.8)	14.1 (13.4-14.7)	14.9 (14.2-15.7)	15.7 (14.9-16.5)	16.7 (15.8-17.5)	17.4 (16.5-18.3)
60-day	10.0 (9.57-10.5)	11.7 (11.1-12.2)	13.1 (12.4-13.7)	14.1 (13.5-14.8)	15.5 (14.7-16.2)	16.4 (15.7-17.2)	17.3 (16.5-18.2)	18.2 (17.3-19.0)	19.2 (18.2-20.1)	19.9 (18.8-20.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

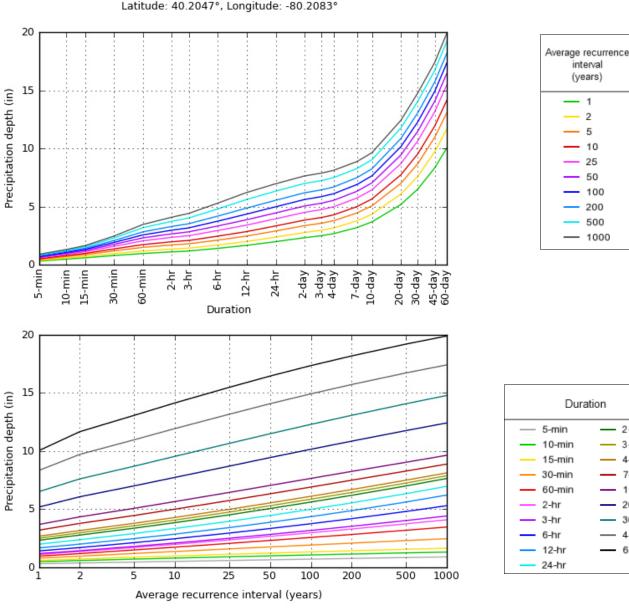
interval (years)

Duration

2-day

3-day

4-day


7-day

10-day 20-day

30-day

45-day

60-day

PDS-based depth-duration-frequency (DDF) curves Latitude: 40.2047°, Longitude: -80.2083°

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Tue May 11 17:11:57 2021

Back to Top

Maps & aerials

Small scale terrain

APPENDIX G

LONG TERM OPERATION AND MAINTENANCE PLAN

OPERATION, MAINTENANCE, AND INSPECTION SCHEDULE

<u>General</u>

Stormwater facilities and permanent BMPs must be inspected in accordance with this document. All documentation on scheduled inspections, times of inspections, maintenance completed, remedial actions taken to make repairs, and any modifications or reconstruction of the storm system shall be maintained and available for review at all times.

Disposal of the accumulated sediment must be in accordance with all applicable local, state, and federal guidelines and regulations. If any drainage structure or outfall indicates the presence of petroleum it shall be removed and disposed of immediately in accordance with applicable regulations.

Detention facilities

This section includes any detention facilities (if present), as well as associated pipes, catch basins and the outlet structures that enter and exit the detention basin.

It is important to regularly inspect the structural elements (inlet/outlet pipes and animal grates) of the detention basin in order to ensure that storm water is flowing in and out of the pond as originally designed.

Debris and sediment commonly clog detention basins and reduce the pond's overall effectiveness.

- 1. Inspect the inlet pipes and outlet pipes for structural integrity on an annual basis. Check inlet/outlet pipes for structural integrity to ensure they are not crumbling or broken.
 - a. Inspect riprap at the inlet pipes. Replace when the riprap is clogged with sediment and debris.
- Conduct routine inspections for trash or other debris that may be blocking the inlet or outlet pipes or emergency spillway monthly and after all rain events. Remove all trash and debris from the basin as necessary. Improperly maintained ponds can harbor breeding area for mosquitos and reduce the storage volume of the pond.
- 3. Inspect and clean the storm sewer system and catch basins upstream from the detention basin every 5 years or as needed
- 4. Inspect for sediment accumulation at the inlet pipes (semiannually and after rain events), as it is important to clean out sediment that might be restricting water flow. Remove accumulated sediment with a shovel and wheelbarrow if it is blocking water flow. Small amounts of removed sediment can be spread evenly on upland areas and seeded with natural vegetation.
- 5. Inspect the stone around the riser/standpipe/outlet pipe (semiannually and after rain events). If stone has accumulated sediment, vegetation and/or debris to an extent that water is not flowing through the stone and out of the pond as originally designed, then stone should be replaced with clean 3" diameter stone choked with clean 6a stone.
- 6. Inspect for excess sediment accumulation in the pond (annually). Remove every 5-10 years or when the sediment accumulation is more than 6-12".

7. Have a professional civil engineer inspect the pond to ensure it is functioning properly (annually). Compare existing conditions to as-built engineering plans.

Infiltration basins/facilities

Regular and effective maintenance is crucial to ensure effective infiltration basin (if present) performance.

- 1. General maintenance
 - a. Proper and timely maintenance is essential to continuous, effective operation; therefore, an access route must be incorporated into the design, and it must be properly maintained.
 - b. All structural components must be inspected, at least once annually, for cracking, subsidence, spalling, erosion and deterioration.
 - c. Components expected to receive and/or trap debris and sediment must be inspected for clogging at least four times annually, as well as after every storm exceeding 1 inch of rainfall.
 - d. Sediment removal should take place when all runoff has drained from the planting bed and the basin is dry.
 - e. Disposal of debris, trash, sediment and other waste material must be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.
 - f. Access points for maintenance are required on all enclosed areas within an infiltration basin; these access points must be clearly identified in the maintenance plan. In addition, any special training required for maintenance personnel to perform specific tasks, such as confined space entry, must be included in the plan.
 - g. Stormwater BMPs may not be used for stockpiling of plowed snow and ice, compost, or any other material.
- 2. Drain time
 - a. The basin must be inspected at least twice annually to determine if the permeability of the basin has decreased.
 - b. The design drain time for the maximum design storm runoff volume must be indicated in the maintenance manual.
 - c. If the actual drain time is longer than the design drain time, the components must be evaluated, and appropriate measures taken to return the infiltration basin to the original tested as-built condition.
 - d. If the infiltration basin fails to drain the water quality design storm within 72 hours, corrective action must be taken, and the maintenance manual revised accordingly to prevent similar failures in the future. Note that annual tilling of the sand layer, using lightweight equipment, may assist in maintaining the infiltration capacity of a surface type system by breaking up clogged surfaces.

Catch basins

All catch basins (if present) shall be inspected to ensure they have adequate sump capacity, oil/grease hoods are in place, frames and grates are not damaged, and access manhole brick and mortar is intact.

- 1. Inspect catch basins four times per year.
- 2. Clean sump annually or whenever basin sump becomes filled with sediment to half its depth (2').

If inspection indicates the presence of petroleum, it shall be removed and disposed of immediately in accordance with applicable regulations.

Drain manholes/overflow control structures

All drain manholes (if present) and overflow control structures (if present) shall be inspected to ensure manhole frames and covers are not damaged, inlet and outlet pipes are draining freely, and access manhole brick and mortar is intact.

- 1. Inspect structures annually.
- 2. Clean structures as field determined.

If inspection indicates the presence of petroleum, it shall be removed and disposed of immediately in accordance with applicable regulations.

Water quality structures (Stormceptor drain inlets & separator unit)

All water quality structures (if present) shall be inspected to ensure manhole frames and covers are not damaged, and unit is draining freely.

- 1. Inspect every (6) months for the first year, and no less then annually thereafter.
- 2. Inspect unit immediately after any fuel, oil or chemical spill.
- 3. Clean unit once sediment depth reaches 15%, approximately 8", of storage capacity.

If inspection indicates the presence of petroleum, it shall be removed and disposed of immediately in accordance with applicable regulations.

Bio-retention areas

All bio-retention areas (if present) shall be inspected to ensure plant material is maintained and pruned, and area is free of trash. Do not store snow in bio-retention area.

- 1. Inspect area every three (3) months.
- 2. Remove any accumulated trash.
- 3. Remove and replace any dead vegetation in spring or fall.

- 4. Prune plantings in spring and fall as necessary.
- 5. Inspect sod filter strip for erosion.
- 6. Replace hardwood mulch every two (2) years.
- 7. Replace entire media and all vegetation as needed should system fail.

If inspection indicates the presence of petroleum, it shall be removed and disposed of immediately in accordance with applicable regulations.

Pavement sweeping & vacuuming

- 1. Street sweeping should occur in the spring immediately following the last anticipated snowfall.
- 2. Street sweeping should be scheduled during non-winter months and conducted once per month during April, May, June, July, August, and September, at a minimum.

Drainage swales

Grass drainage swales shall be inspected for any slope erosion, ponding, or sedimentation. Inspect basin twice a year, or after a major storm event (1" rainfall in 24-hour period).

- 1. Remove trash and debris.
- 2. Remove accumulated sediment in swale.
- 3. Mow side slopes at least twice a year. Grass shall not be cut shorter than 4" tall.

Stone spillways and level spreaders

Inspect all rip-rap spillways and level spreaders (if present) twice a year, or after a major storm event (1" rainfall in 24-hour period). Inspect if rip-rap has been damaged and note any type of erosion. Remove any trash, debris, and accumulated sediment.

Underground storm water volume mitigation facility

The owner of the proposed underground storm water control facilities (if present) shall at all times operate and maintain the facilities in a safe and operable condition so as not to imperil life, health, safety, or property located above or below the facility.

The owner of the facility shall be responsible for the evaluation of the safety and operational status of the facility and all appurtenant structures and the modification thereof in accordance with the requirement to ensure protection of life and property as specified above.

The owner of the facility shall inspect the facilities and all appurtenant works according to the following schedule:

1. Perform cleaning during the installation of work and upon completion of the work.

- 2. Remove from site all excess materials, debris, and equipment. Repair any damage to adjacent materials and surfaces resulting from installation of this work.
 - a. Removal of any excess materials, debris, and equipment shall be done in a manner that is both in compliance with any and all local, state, and federal regulations, as well as ultimate disposal occurring only a site deemed approved and acceptable by the Pennsylvania Department of Environmental Protection.

In addition, the on-going maintenance and operations of this facility is also required. Any storm water devices that are part of this project, <u>shall be inspected twice annually</u>, at a minimum. The necessary maintenance measures shall be implemented as outlined above.

Vegetation notes

All areas to be stabilized by vegetation shall be inspected for rills or gullies, bare soil patches or accumulation of sediment at the toe of slopes. Eroded areas shall be regraded, and substandard vegetated areas shall be reserved and mulched as specified on the plans.

Project wastes and recycling criteria

Provide convenient, well-maintained, and properly located toilet facilities. Provide for regular inspections, service, and disposal. Locate toilet facilities away from storm drain inlets and waterways to prevent accidental spills and contamination of storm water. Treat or dispose of sanitary and septic waste in accordance with state or local regulations.

Proper material use, storage, waste disposal, and training of employees and subcontractors can prevent or reduce the discharge of hazardous and toxic wastes to storm water. Implement a comprehensive set of wastemanagement practices for hazardous or toxic materials, such as paints, solvents, petroleum products, pesticides, wood preservatives, acids, roofing tar, and other materials.

Solid or construction waste

- 1. Designate trash and bulk waste-collection areas on-site
- 2. Recycle materials whenever possible (e.g., paper, wood, concrete, oil)
- 3. Segregate and provide proper disposal options for hazardous material wastes
- 4. Clean up litter and debris from the construction site daily
- 5. Locate waste-collection areas away from streets, gutters, watercourses, and storm drains.
- 6. Waste-collection areas (dumpsters, and such) are often best located near construction site entrances to minimize traffic on disturbed soils. Consider secondary containment around waste collection areas to further minimize the likelihood of contaminated discharges.

Sanitary and septic waste

- 1. Provide restroom facilities on-site.
- 2. Maintain clean restroom facilities and empty porta-johns regularly.

- 3. Provide secondary containment pans under porta-johns, where possible.
- 4. Provide tie-downs or stake downs for porta-johns in areas of high winds.
- 5. Educate employees, subcontractors, and suppliers on locations of facilities.
- 6. Do not discharge or bury wastewater at the construction site.
- 7. Inspect facilities for leaks, repair or replace immediately.

Hazardous materials and wastes

- 1. Develop and implement employee and subcontractor education, as needed, on Hazardous and toxic waste handling, storage, disposal, and cleanup.
- 2. Designate hazardous waste-collection areas on-site.
- 3. Place all hazardous and toxic material wastes in secondary containment.
- 4. Hazardous waste containers should be inspected to ensure that all containers.
- 5. Are labeled properly and that no leaks are present.

On-going post development issues

- 1. Follow manufacturer's recommended maintenance procedures for all BMPs
- 2. Maintenance of BMPs will vary according to the specific area and site conditions
- 3. Remove sediment from BMPs as appropriate and properly dispose of sediment into Controlled areas to prevent soil from returning to the BMP during subsequent Rain events
- 4. Remove sediment from paved roadways and from around BMPs protecting storm Drain inlets
- 5. Removal of all organic materials (leaves, grass clippings, mulch, tree branches, Etc.) Shall be conducted immediate upon observation, and per all necessary local, State, and federal regulations.

Removal of any excess materials, debris, and equipment shall be done in a manner that is both in compliance with any and all local, state, and federal regulations, as well as ultimate disposal occurring only a site deemed approved and acceptable by the Pennsylvania Department of Environmental Protection.

Housekeeping operations:

- 1. Good housekeeping and material management reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.
 - a. All materials stored on-site must be stored in a neat, orderly manner in their appropriate containers and, if possible, under a roof or other enclosure.
 - b. Products shall be kept in their original containers with the original manufacturer's label.
 - c. Substances should not be mixed with one another unless recommended by the manufacturer.
 - d. Whenever possible, all of a product will be used up before disposing of a container.
 - e. Original materials labels and material safety data sheets (MSDS) shall be kept by the owner.
 - f. Petroleum products:
 - i. All on-site vehicles and parking areas shall be monitored weekly for leaks and spills. Spills shall be cleaned immediately.
 - ii. Petroleum products shall be stored under cover and shall be in tightly sealed containers that are clearly labeled.
 - g. Fertilizers:
 - i. Fertilizers shall only be used in the minimum amounts as recommended by the manufacturer.
 - ii. The contents of any un-used fertilizer shall be transferred to a clearly labeled, sealable plastic bin, to avoid spillage.
 - h. Paints solvents.
 - i. All paints and solvents shall be stored in original manufacturer's containers in a covered location.
 - ii. The use of paints and solvents shall, whenever possible, be limited to service or storage bays. Where not possible, the work area shall be protected with impermeable drop clothes or tarps. At no point shall material be used in parking or access ways that are tributaries to the drainage system.
- 2. Spill control practices:
 - a. Manufacturer's recommended methods shall be clearly posted for spill clean-up and school personnel shall be made aware of the procedures and the locations of cleanup information and supplies.

- b. Material and equipment necessary for spill clean-up will be kept on-site in a designated material storage area. Equipment will include, but not be limited to, brooms, dust pans, mops, rags, gloves, goggles, absorbent materials, sand, sawdust and plastic & metal trash containers specifically kept and labeled for this purpose.
- c. All spills must be cleaned-up immediately after discovery.
- d. Spills of toxic or hazardous material must be reported to the appropriate state, local or federal agency, as required by-law.
- 3. The washing of vehicles shall be limited to areas within the buildings that are served by a floor drain system and on-site tight tank. Wash water with its combination of solvents, detergents and oil/greases should not be allowed to enter any part of the on-site drainage system.
- 4. Snow plowing operations shall stockpile snow, ice and accumulated materials in areas where snow melt will flow into the on-site drainage systems, including drainage basins. No plowing or storage of snow is allowed in bio-retention areas or wetland resource areas.
- 5. During winter conditions sand use site-wide shall be applied to the minimum extent possible to maintain safe conditions.
- 6. Winter treatment of porous pavement areas shall be limited to plowing.

Recycling Parameters for Post Construction Storm Water Management:

*NOTE: This section applies to all housekeeping and recycling removal of foreign debris and related items/components during the Post Construction Storm Water phase of the project and applies to all previous mentions of such within this document.

Differentiation must be identified between construction waste (waste generated before the site is entirely stabilized, completed, and converted) to the post construction phase.

Erosion control wastes differ from post construction generated materials and must be addressed and handled separately from the traditional form of recycling criteria that often is outlined in erosion and sedimentation control plan guidelines:

Regarding wastes generated after the plan is fully operational, all wastes from post construction BMPs, such as silt/gravel, trash/litter/floatables, grass clippings, branches, leaves, etc., shall be removed from the site and recycled or disposed of in accordance with the department's solid waste management regulations at **Title 25 PA. Code 260.1 et seq., 271.1., and 287.1 et seq**. No wastes or other materials shall be burned, buried, dumped, or discharged at the site.

APPENDIX H

INFILTRATION TESTING

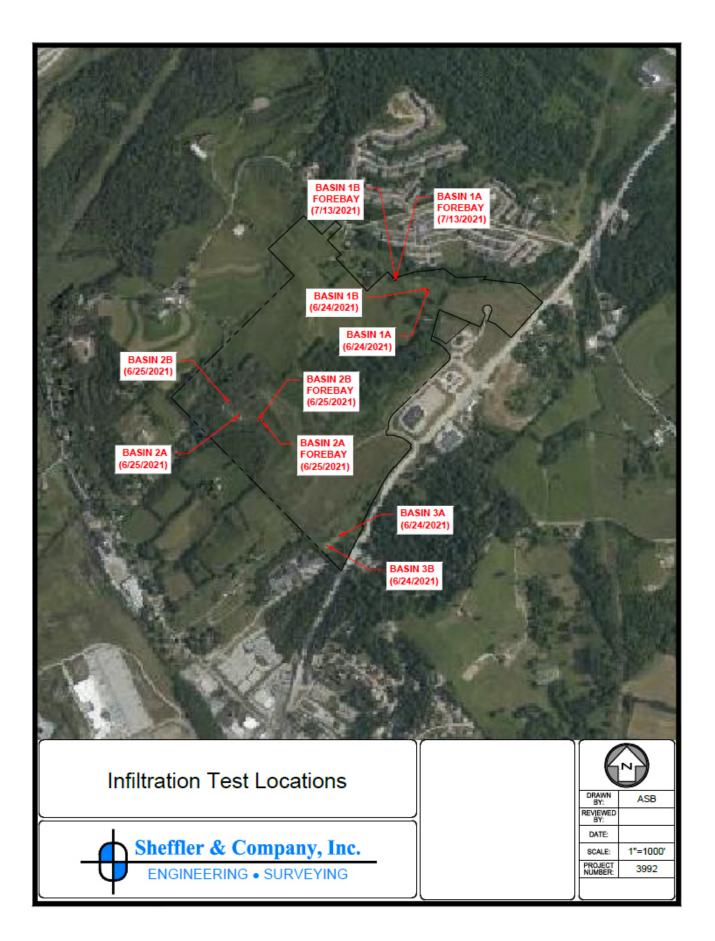
Double-ring infiltrometer test procedure:

Locate testing area and prepare level testing area at elevation of final BMP

Drive ring into soil approximately two inches, ensuring inner and outer rings are level

Presoak area prior to testing by filling both rings with water to level indicator mark

Continue pre-soak for 30 minutes Minimum water depth should be four inches


Using the water level drop of under two inches at each testing location, 30minute intervals are used for measurements

After each time interval (30 minutes) elapses, obtain a drop reading in the center ring

Refill to water level mark after each reading

This process is repeated eight consecutive times and a stabilized rate drop is achieved after each interval

The drop occurring in the center ring over each interval is the averaged as the stabilized rate, and then is reported as inches per hour for that test site location

Infiltration Testing Worksheet	Infiltration Testing Worksheet
Test Number: Basin 1A	Test Number: Basin 1B
Date: June 24, 2021 Location: Meadows Landing	Date: June 24, 2021 Location: Meadows Landing
Project: 3992	Project: 3992
Time Increment: Drop (In)	Time Increment: Drop (In)
0:00 ¹ -	0:00 ¹ -
0:30 <i>0.00</i>	0:30 0.00
1:00 0.00 1:30 0.00	1:00 0.00 1:30 0.00
2:00 0.00	2:00 0.00
2:30 0.00	2:30 0.00
0.00 Final Infiltration Rate (per 30 mins)	0.00 Final Infiltration Rate (per 30 mins)
Rate ² = 0.0 In/Hr	Rate ² = 0.0 ln/Hr
1 - Initial Pre-Soak Period No Infiltration Observed	1 - Initial Pre-Soak Period No Infiltration Observed
2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)	2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)
Weather conditions dry, no water encountered	Weather conditions dry, no water encountered
Infiltration Testing Worksheet	Infiltration Testing Worksheet
Test Number: Basin 1 Forebay A	Test Number: Basin 1 Forebay B
Date: June 25, 2021	Date: June 25, 2021
Location: Meadows Landing Project: 3992	Location: Meadows Landing Project: 3992
Time Increment: Drop (In)	Time Increment: Drop (In)
0:00 ¹ - 0:30 0.25	0:00 ¹ - 0:30 1.50
1:00 0.25	1:00 1.50
1:30 0.25 2:00 0.13	1:30 1.60 2:00 1.50
2:30 0.13	2:30 1.55
0.19 Final Infiltration Rate (per 30 mins)	1.53 Final Infiltration Rate (per 30 mins)
Rate2 = 0.2 ln/Hr	Rate2 = 1.5 ln/Hr
1 - Initial Pre-Soak Period	1 - Initial Pre-Soak Period
2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)	2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)
Weather conditions dry, no water encountered	Weather conditions dry, no water encountered
Infiltration Testing Worksheet	Infiltration Testing Worksheet
Test Number: Basin 2 Forebay A	Test Number: Basin 2 Forebay B
Date: June 25, 2021	Date: June 25, 2021
Location: Meadows Landing Project: 3992	Location: Meadows Landing Project: 3992
Time Increment: Drop (In)	Time Increment: Drop (In)
0:00 ¹ - 0:30 0.50	0:00 ¹ - 0:30 0.70
1:00 0.63	1:00 0.60
1:30 0.50	1:30 0.40
2:00 0.50 2:30 0.50	2:00 0.60 2:30 0.50
0.53 Final Infiltration Rate (per 30 mins)	0.56 Final Infiltration Rate (per 30 mins)
$\mathbf{Rate}^2 = \mathbf{0.5 \ In/Hr}$	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{10$
1 - Initial Pre-Soak Period	1 - Initial Pre-Soak Period
2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)	2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)
Weather conditions dry, no water encountered	Weather conditions dry, no water encountered
Infiltration Testing Worksheet	Infiltration Testing Worksheet
Test Number: Basin 2A	Test Number: Basin 2B
Date: June 25, 2021	Date: June 25, 2021
Location: Meadows Landing Project: 3992	Location: Meadows Landing Project: 3992
Time Increment: Drop (In)	Time Increment: Drop (In)
0:00 ¹ - 0:30 0.75	0:00 ¹ - 0:30 <i>0.80</i>
1:00 0.25	1:00 0.20
1:30 0.31 2:00 0.25	1:30 0.20 2:00 0.60
2:00 0.25 2:30 0.25	2:30 0.30
0.27 Final Infiltration Rate (per 30 mins)	0.42 Final Infiltration Rate (per 30 mins)
Rate2 = 0.3 In/Hr	$\frac{1}{1000} Rate2 = 0.4 ln/Hr$
1 - Initial Pre-Soak Period	1 - Initial Pre-Soak Period
2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)	2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)
Weather conditions dry, no water encountered	Weather conditions dry, no water encountered
Infiltration Testing Worksheet	Infiltration Testing Worksheet
Test Number: Basin 3A	Test Number: Basin 3B
Date: June 25, 2021	Date: June 25, 2021
Location: Meadows Landing Project: 3992	Location: Meadows Landing Project: 3992
Time Increment: Drop (In)	Time Increment: Drop (In)
0:00 ¹ - 0:30 1.19	0:00 ¹ - 0:30 0.20
1:00 1.31	1:00 0.30
1:30 1.38	1:30 0.40
2:00 1.31 2:30 1.31	2:00 0.30 2:30 0.30
4.22	0.00
1.33 Final Infiltration Rate (per 30 mins)	0.30 Final Infiltration Rate (per 30 mins)
Rate ² = 1.3 In/Hr	Rate ² = 0.3 In/Hr
1 - Initial Pre-Soak Period 2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)	1 - Initial Pre-Soak Period 2 - Safety Factor of 2 Applied to Rate (Minimum SF of 2 Required)
Weather conditions dry, no water encountered	Weather conditions dry, no water encountered

APPENDIX I

QUALIFICATIONS AND EXPERIENCE

Graham L. Ferry, PE, PMP, LEED AP BD+C, ENV SP, CPESC, CPSWQ, CESSWI

Project Manager/Senior Civil Engineer

EDUCATIONPoint Park UniversityMaster of Science Degree, Engineering Management, 2004

Point Park University Bachelor of Science Degree, Civil Engineering Technology, 2002

Pittsburgh Technical College Associate of Specialized Technology Degree, CAD Computer Systems Management, 1995

Pittsburgh Technical College Associate of Specialized Technology Degree, Architectural CADD, 1995

REGISTRATIONProfessional Engineer, Commonwealth of Pennsylvania, 2007
Professional Engineer, State of Ohio, 2008
Professional Engineer, State of West Virginia, 2008
Professional Engineer, State of New York, 2008
Professional Engineer, State of Maryland, 2012
PMP - Project Management Professional, 2010
LEED AP BD+C, 2009
ENV SP - Envision Sustainability Professional, 2016
CPSWQ - Certified Professional in Storm Water Quality, 2009
CPESC - Certified Professional in Erosion and Sedimentation Control, 2007
CESSWI –Certified Erosion, Sedimentation, and Storm Water Inspector, 2014

 PROFESSIONAL
 Sheffler & Company, Inc., Sewickley, Pennsylvania

 EXPERIENCE
 Project Manager/Senior Engineer - 2017 to Present

Mr. Ferry is a project manager and senior level civil engineer with over 26 years of experience in the field of civil engineering and academia. He has extensive experience in the design, coordination, and management of various commercial/residential land development and energy related projects. His experience in energy services projects includes well pad design and layout, mid-stream project environmental protection, permitting, site inspection and project management and coordination for numerous sites in Pennsylvania, Maryland, and Ohio. Mr. Ferry's experience in commercial and residential land development includes multiple residential developments (single- and multi-family) along with retail, commercial and industrial projects throughout Pennsylvania, Ohio, and West Virginia. He possesses experience in providing civil engineering, permitting, and land development services to the university and K-12 markets as well. He also possesses extensive experience in both large and small-scale hydrologic and hydraulic modeling and design and has contributed on the development and preparation of several Pennsylvania Act 167, county-wide storm water management plans, and model ordinances. He has additional experience in sanitary sewage collection and conveyance system design and construction management, sanitary sewage planning and permitting, and various other areas.

Point Park University, Pittsburgh, Pennsylvania Adjunct Instructor of Civil Engineering Technology and Mathematics - 2015 to Present

Responsible for teaching and instruction in various civil engineering areas, as well as mathematics:

Environmental Engineering I - Environmental Engineering II - Elementary Statistics

S&ME, Inc., Pittsburgh, Pennsylvania Project Engineer - 2013 to 2016

Responsible for the design, management and oversight of energy/oil and gas related projects throughout Pennsylvania, Maryland, Georgia, West Virginia, and Ohio

- Convert greenfield sites by designing and developing well pads, compressor facilities, and gas plants
- Work closely with Environmental team to obtain various engineering, environmental and traffic-related permits, experienced with PA DEP permitting for both land development projects as well as oil and gas related projects, as well as Ohio, West Virginia, Maryland and Georgia
- Create land development plans, specifications and calculations for Oil and Gas clients
- Perpetuate the safe culture and quality assurance of work products developed by the team in Pittsburgh and other supporting market offices and responsibility for QA/QC reviews and professional sealing of design packages

URS/AECOM, Inc., Pittsburgh, Pennsylvania Senior Civil and Environmental Engineer - 2013 to 2013

- Position involved interaction with senior engineers and environmental staff, for providing engineering and environmental services for natural gas E&P operations and midstream pipeline operators
- Performed engineering and environmental consulting services for all operations relevant to well pad design, compressor station design, and valve site design

Herbert, Rowland, and Grubic, Inc., Cranberry Township, Pennsylvania Land Development Project Manager – 2012 to 2013

- Responsible for the management of land and site development projects and oversight and coordination of engineering teams
- Responsible for delivering high quality land development designs in a timely manner, within budget, all within a fast-paced environment

L. Robert Kimball and Associates, Inc., Moon Township, Pennsylvania Project Manager - 1996 to 2012

- A diverse experience in various aspects of civil engineering
- Provided significant civil engineering, permitting, and land development services to the university and K-12 market segments, with a large focus serving the

Pittsburgh Public Schools (PPS) and Bethel Park School District, as well as other regional locations

- Worked on a broad range of projects with the heaviest focus on land development, storm water management, watershed management, extensive permitting, and sanitary sewer conveyance and collection systems
- Provided in-house permitting services to the Pittsburgh Water and Sewer Authority (PWSA) to assist in organizing existing and active permits

ADDITIONAL TRAINING:

- Attended various seminars on storm water management, erosion & sedimentation control and PADEP permitting, including ESCGP-2 workshop, LEED related issues, and Low Impact Development.
- PACP/MACP/LACP NASSCO Pipeline, Manhole, and Lateral Assessment and Certification Programs
- OSHA Confined Space Entry and Rescue Certified